
Analyzing Flexible Timeline-based Plans
Amedeo Cesta 1 and Alberto Finzi 2 and Simone Fratini 3 and Andrea Orlandini 4 and Enrico Tronci 5

Abstract. Timeline-based planners have been shown quite success-
ful in addressing real world problems. Nevertheless they are con-
sidered as a niche technology in AI P&S research as an application
synthesis with such techniques is still considered a sort of “black
art”. Authors are currently developing a knowledge engineering tool
around a timeline-based problem solving environment; in this frame-
work we aim at integrating verification and validation methods. This
work presents a verification process suitable for a timeline-based
planner. It shows how a problem of flexible temporal plan verification
can be cast as model-checking on timed game automata. Addition-
ally it provides formal properties and checks the effectiveness of the
proposed approach with a detailed experimental analysis.

1 INTRODUCTION
A key aspect for technological development of AI Planning and
Scheduling (P&S) stems in the design and implementation of effec-
tive knowledge engineering environments to support application de-
velopment. In the past, several planning systems were endowed with
development environments to facilitate application design. More re-
cent examples of such environments are EUROPA [5] and ASPEN
[10]. Such environments can be enhanced in several ways. In a recent
line of work we have envisaged the synthesis of knowledge engineer-
ing environments in which constraint-based and validation and veri-
fication (V & V) techniques both contribute to effective P&S. In par-
ticular, we are working on timeline-based planning. A known prob-
lem in timeline-based planning as used in [9, 5, 10] is the connection
with plan execution which is instrumental in several real domains.
Such architectures return an envelope of potential solutions in form
of a flexible plan which is commonly accepted to be less brittle of a
single plan when coping with execution. But the general formal prop-
erties of such a representation are far from being statically defined.
Some aspects of such plans have been studied by working on the
temporal network which is underlying the constraint based plan rep-
resentation often used by such systems – see for example [11, 8]. We
are currently tackling the more general problem of flexible temporal
plan verification. This is an open issue in timeline-based planning
and we are not aware about other approaches in the literature. In [4],
we proposed the use of a model checker (UPPAAL-TIGA) based on
the TGA formalism to verify flexible plans. Here, that initial work is
put on a firmer ground by: (a) showing formal properties of the trans-
lation of the flexible plan verification problem as model-checking on
time game automata; (b) introducing a benchmark problem which is
realistic and rich enough to allow experiments along different direc-
tions; (c) presenting a first complete experimental analysis showing

1 ISTC-CNR, Italy, email: amedeo.cesta@istc.cnr.it
2 DSF “Federico II” University, Italy, email: alberto.finzi@dsf.unina.it
3 ISTC-CNR, Italy, email: simone.fratini@istc.cnr.it
4 ISTC-CNR, Italy, email: andrea.orlandini@istc.cnr.it
5 DI “La Sapienza” University, Italy, email: enrico.tronci@di.uniroma1.it

that the approach based on model checking is feasible and requires
time constants that are acceptable for static analysis.

2 PRELIMINARIES
This section shortly presents the two basic ingredients we combine
in our knowledge engineering environment: timeline-based planning
and timed game automata. In [1], the same ingredients are put to-
gether to propose a method for (non flexible) plan synthesis and not
for flexible temporal plan verification. In [6], UPPAAL is considered
for domain modeling and analysis, not addressing plan verification
and not considering the TGA formalism.

2.1 Timeline-Based Planning and Execution
Timeline-based planning [9] is an approach to temporal planning
which has been applied in the solution of several real world prob-
lems. The approach pursues a general idea that planning and schedul-
ing consist in the synthesis of desired temporal behavior for complex
physical systems. The set of features of a domain that needs con-
trol are modeled as a set of temporal functions whose values over a
time horizon have to be planned for. Such functions are synthesized
during problem solving by posting planning decisions. The evolu-
tion of a single temporal feature over a time horizon is called the
timeline of that feature. In this paper, the time varying features are
called multi-valued state variables as in [9]. As in classical control
theory, the evolution of controlled features are described by causal
laws which determine legal temporal evolution of timelines. Such
causal laws are specified for the state variables in a domain specifi-
cation which identifies the operational constraints in a given domain.
In this context, the task of a planner is to find a sequence of control
decisions that bring the variables into a final desired set of evolu-
tions always satisfying the domain specification. We assume that the
temporal features represented as state-variables have a finite set of
possible values assumed over temporal intervals. The temporal evo-
lutions are sequences of operational states – i.e., stepwise constant
functions of time. Operational constraints specify which value tran-
sitions are allowed, the duration of each valued interval (i.e., how
long a given operational status can be maintained) and synchroniza-
tion constraints between different state variables.

More formally, a state variable is defined by a tuple 〈V, T ,D〉
where: (a) V = {v1, . . . , vn} is a finite set of values; (b) T : V →
2V is the value transition function; (c) D : V → N × N is the value
duration function, i.e. a function that specifies the allowed duration
of values in V (as an interval [lb, ub]). (b) and (c) specify the opera-
tional constraints on the values in (a).

A planning domain is defined as a set of state variables
{SV1, . . . ,SVn}. They cannot be considered as reciprocally decou-
pled, but a set of additional relations exist, called synchronizations,
modeling the existing temporal and causal constraints among the val-
ues taken by different state variable timelines (i.e., patterns of legal

occurrences of the operational states across the timelines). More for-
mally, a synchronization has the form

〈T L, v〉 −→ 〈{〈T L′1, v′1〉 . . . , 〈T L′n, v′n〉},R〉

where: T L is the reference timeline; v is a value on T Lwhich makes
the synchronization applicable; {〈T L′1, v′1〉 . . . , 〈T L′n, v′n〉} is a set
of target timelines on which some values v′j must hold; andR is a set
of relations which bind temporal occurrence of the reference value v
with temporal occurrences of the target values.

Timeline based planning. The temporal evolutions of a state vari-
able will be described by means of timelines, that is a sequence of
state variable values, a set of ordered transition points between the
values and a set of distance constraints between transition points.
When the transition points are bounded by the planning process
(lower and upper bounds are given for them) instead of being ex-
actly specified, as it happens in case of a least commitment solving
approach for instance, we refer to the timeline as time flexible and to
the plan resulting from a set of flexible timeline as a flexible plan.

A plan is defined as a set of timelines {T L1, . . . , T Ln} over the
same interval for each state variable. The process of solution extrac-
tion from a plan is the process of computing (if exists) a valid and
completely specified set of timelines from a given set of time-flexible
timelines. A solution is valid with respect to a domain theory if every
temporal occurrence of a reference value implies that the related tar-
get values hold on target timelines presenting temporal intervals that
satisfy the expected relations.

Plan execution. During plan execution the plan is under responsibil-
ity to an executive program that forces value transitions over time-
lines. A well known problem with execution is that not all the value
transitions are under responsibility of the executive but event exists
that are under control of nature. As a consequence, an executive can-
not completely predict the behavior of the controlled physical system
because the duration of certain processes or the timing of exogenous
events is outside of its control. In such cases, the values for the state
variables that are under the executive scope should be chosen so that
they do not constrain uncontrollable events. This is the controllabil-
ity problem defined, for example, in [11] where contingent and exe-
cutable processes are distinguished. The contingent processes are not
controllable, hence with uncertain durations, instead the executable
processes are started and ended by the executive system. Control-
lability issues underlying a plan representation have been formal-
ized and investigated for the Simple Temporal Problems with Un-
certainty (STPU) representation in [11] where basic formal notions
are given for dynamic controllability (see also [8]). In the timeline-
based framework, we introduce the same controllability concept de-
fined on STPU as follows. Given a plan as a set of flexible time-
lines PL = {T L1, . . . , T Ln}, we call projection the set of flexible
timelines PL′ = {T L′1, . . . , T L′n} derived from PL setting to
a fixed value the temporal occurrence of each uncontrollable time-
point. Considering N as the set of controllable flexible timepoints in
PL, a schedule T is a mapping T : N → N where T (x) is called
time of timepoint x. A schedule is consistent if all value durations
and synchronizations are satisfied in PL. The history of a timepoint
x w.r.t. a schedule T , denoted by T{≺ x}, specifies the time of all
uncontrollable timepoints that occur prior to x. An execution strategy
S is a mapping S : P → T where P is the set of projections and
T is the set of schedules. An execution strategy S is viable if S(p)
(denoted also Sp) is consistent for each projection p. Thus, a flexible
planPL is dynamically controllable if there exists a viable execution
strategy S such that Sp1{≺ x} = Sp2{≺ x} ⇒ Sp1(x) = Sp2(x)

for each controllable timepoint x and projections p1 and p2.

2.2 Timed Game Automata
Timed game automata (TGA) model have been introduced in [7] to
model control problems on timed systems. Here, we briefly recall
some of them that we shall use in the rest of the paper.

Definition 1 A Timed Game Automaton is a tuple A =
(Q, q0,Act, X, Inv, E) where: Q is a finite set of locations; q0 ∈ Q
is the initial location; Act is a finite set of actions split in two disjoint
sets, Actc the set of controllable actions and Actu the set of un-
controllable actions; X is a finite set of a nonnegative, real-valued
variables called clocks; Inv : Q → B(X) is a function associating
to each location q ∈ Q a constraint Inv(q) (the invariant of q); E ⊆
Q×B(X)×Act×2X×Q is a finite set of transitions. WhereB(X)
is the set of constraints in the form x ∼ c, where c ∈ Z, x, y ∈ X ,

and ∼∈ {<,≤,≥, >}. We write q
g,a,Y→ q′ ∈ E for (q, g, a, Y , q′)

∈ E.

A state of a TGA is a pair (q, v) ∈ Q × RX≥0 that consists of a
discrete part and a valuation of the clocks (i.e., a value assignment
for each clock in X). An admissible state for a A is a state (q, v) s.t.
v |= Inv(q). From a state (q, v) a TGA can either let time progress
or do a discrete transition and reach a new state.

A time transition for A is 4-tuple (q, v)
δ→ (q, v′) where (q, v) ∈

S, (q, v′) ∈ S, δ ∈ R≥0, v′ = v + δ, v |= Inv(q) and v′ |= Inv(q).
That is, in a time transition a TGA does not change location, but
only its clock values. Note that all clock variables are incremented
by the same amount δ in valuation v′. This is why variables in X
are named clocks. Accordingly, δ models the elapsed time during the
time transition.

A discrete transition for A is 5-tuple (q, v)
a→ (q′, v′) where

(q, v) ∈ S, (q′, v′) ∈ S, a ∈ Act and there exists a transition

q
g,a,Y→ q′ ∈ E s.t. v |= g, v′ = v[Y] and v′ |= Inv(q′). In other

words, there is a discrete transition (labeled with a) from state (q, v)
to state (q′, v′) if the clock values (valuation v) satisfy the transition
guard g and the clock values after resetting the clocks in Y (valua-
tion v′) satisfy the invariant of location q′. Note that an admissible
transition always leads to an admissible state and that only clocks in
Y (reset clocks) change their value (namely, to 0).

A run of a TGA A is a finite or infinite sequence of alternating
time and discrete transitions of A. We denote with Runs(A, (q, v))
the set of runs of A starting from state (q, v) and write Runs(A) for
Runs(A, (q,~0)). If ρ is a finite run, we denote with last(ρ) the last
state of run ρ and with Duration(ρ) the sum of the elapsed times of
all time transitions in ρ.

A network of TGA (nTGA) is a finite set of TGA evolving in par-
allel with a CCS style semantics for parallelism. Namely, at any time,
only one TGA in the network can change location, unless a synchro-
nization on labels takes place. In the latter case, the two automata
synchronizing on the same label move together. Note that time does
not elapse during synchronizations.

Given a TGA A and three symbolic configurations Init, Safe, and
Goal, the reachability control problem or reachability game RG(A,
Init, Safe, Goal) consists in finding a strategy f such that A starting
from Init and supervised by f generates a winning run that stays in
Safe and enforces Goal.

A strategy is a partial mapping f from the set of runs ofA starting
from Init to the set Actc ∪ {λ} (λ is a special symbol that denotes
”do nothing and just wait”). For a finite run ρ, the strategy f(ρ) may
say (1) no way to win if f(ρ) is undefined, (2) do nothing, just wait

in the last configuration ρ if f(ρ) = λ, or (3) execute the discrete,
controllable transition labeled by l in the last configuration of ρ if
f(ρ) = l.

The restricted behavior of a TGAA controlled with some strategy
f is defined by the notion of outcome. The outcome Outcome(q, f)
is defined as the subset of Runs(q,A) that can be generated from
q executing the uncontrollable actions in Actu or the controllable
actions provided by the strategy f . A maximal run ρ is either an
infinite run or a finite run that satisfies either i) last(ρ) |= Goal or
ii) if ρ a→ then a ∈ Actu (i.e. the only possible next discrete actions
from last(ρ), if any, are uncontrollable actions). A strategy f is a
winning strategy from q if all maximal runs in Outcome(q, f) are
in WinRuns(q,A). A state q in a TGA A is winning if there exists
a winning strategy f from q in A.

3 USING nTGA TO MODEL TIMELINE-BASED
PLANNING SPECIFICATIONS

In our approach, flexible timeline-based plan verification is per-
formed by solving a Reachability Game using the UPPAAL-TIGA
tool. To this end, this section describes how a flexible timeline-based
plan, state variables and domain theory can be modeled using the
TGA formalism. Our strategy is the following. First, timelines and
state variables are mapped to TGA. Second, we model the flexible
plan view of the world by partitioning state variables/timelines into
two classes: controllable and uncontrollable. Finally, an Observer
TGA is introduced in order to check for value constraints violations
as well as synchronizations violations.

Modeling a Planning Domain as an nTGA. Let PD =
{SV1, . . .SVn} be the set of state variables defining our plan-
ning domain. We will model each SV ∈ PD with a TGA ASV
= (QSV , q0, ActSV , XSV , InvSV , ESV). Then the set SV =
{ASV1 , ...,ASVn} represents our planning domainPD as an nTGA.
The TGA ASV is defined as follows. The set QSV of locations of
ASV is just the set V of values of SV . The initial state q0, of ASV
is the initial value in the timeline of SV . The set of clocks XSV of
ASV consists of just one local clock: csv . The set ActSV of actions
ofASV consists of the values V of SV . If SV is controllable then the
actions in ActSV are controllable (i.e., ActSV = ActcSV), otherwise
they are uncontrollable (i.e., ActSV = ActuSV). Location invariants
InvSV for ASV are defined as follows: InvSV (v) := csv ≤ ub,
where: v ∈ QSV = V and D(v) = [lb, ub]. The set ESV of transi-

tions of ASV consists of transitions of the form v
g,v′?,Y→ v′, where:

g = csv ≥ lb, Y = {csv}, v ∈ QSV = V , D(v) = [lb, ub],
v′ ∈ T (v).

Modeling a Flexible Plan as an nTGA. LetP = {T L1, . . . , T Ln}
be a flexible plan for our planning domain PD. We will model
each T L ∈ P with a TGA AT L = (QT L, q0, ActT L, XT L,
InvT L, ET L). Then, Plan = {AT L1 , ...,AT Ln} represents P as
an nTGA. The TGA AT L is defined as follows. The set QT L of lo-
cations of AT L consists of the value intervals (plan steps) in T L
along with a location lgoal modeling the fact that the plan has been
completed. Thus,QT L = T L ∪ {lgoal}. The initial state q0, ofAT L
is the first value interval l0 in T L. The set of clocks XT L of AT L
consists of just one element: the plan clock cp. Let SV be the state
variable corresponding to the timeline T L under consideration. The
set ActT L of actions of AT L consists of the values of SV . If SV is
controllable then the actions in ActT L are controllable (i.e., ActT L =
ActcT L), otherwise they are uncontrollable (i.e., ActT L = ActuT L).
Location invariants InvT L for AT L are defined as follows. For each
l = [lb, ub] ∈ T L we define InvT L(l) := cp ≤ ub. For the goal lo-

cation lgoal the invariant InvT L(lgoal) is identically true, modeling
the fact that once plan is completed we can stay there as long as we
like. The setET L of transitions ofAT L consists of intermediate and
final transitions. An intermediate transitions has the form l

g,v!,Y→ l′,
where: g = cp ≥ lb, Y = ∅ with l and l′ consecutive time intervals

in T L. A final transition has the form q
∅,∅,∅→ q′, where: q = lpl (pl is

the plan length), q′ = lgoal. Note that, by using state variable values
as transitions label we implement the synchronization between state
variables and planned timelines.

Modeling Synchronizations with an Observer TGA. We model
synchronization between SV and Plan with an Observer, that is a
TGA reporting an error when an illegal transition occurs.

The observer TGA AObs = (QObs, q0, ActObs, XObs, InvObs,
EObs) is defined as follows. The set of locations is QObs =
{lok, lerr} modeling legal (lok) and illegal (lerr) executions. The
initial location q0 is lok. The set of actions is ActObs = {afail}.
The set of clocks is XObs = {cp}. There are no invariants, that
is InvObs(l) returns always the empty constraint. This models the
fact that AObs can stay in any location as long as it likes. The
set EObs consists of two kind of uncontrollable transitions: value
transitions and sync transitions. Let sp ∈ T L be a plan step
and vp ∈ SV its associated planned value. A value transition has

the form lok
g,afail,∅→ lerr , where: g = T Lsp ∧ ¬SVvp . Let

〈T L, v〉 −→ 〈{T L′1, . . . , T L′n}, {v′1, . . . , v′n} ,R〉 be a synchro-

nization. A sync transition has the form lok
g,afail,∅→ lerr , where:

g = ¬R(T Lv, T L
′
1v

′
1
, . . . , T L

′
nv

′
n

). Note how, for each possible
cause of error (illegal value occurrence or synchronization violation),
a suitable transition is defined, forcing our Observer TGA to move to
the error location which, once reached, cannot be left.

The nTGA PL composed by the set of automata PL = SV ∪
Plan ∪ {AObs} models Flexible plan, State Variables and Domain
Theory descriptions.

Theorem 1 The nTGA PL describes all and only the behaviors im-
plemented by the flexible plan P .

Sketch of Proof. The network Plan = {AT L1 , ...,AT Ln} repre-
sents all the possible planned temporal behaviors over all the time-
lines. In fact, each automaton AT Li describes the planned temporal
sequence of values for the timeline T Li within the planning hori-
zon H. While, the automata in SV = {ASV1 , ...,ASVn} represent
exactly the given state variables description. We recall that the use of
input/output actions implements straightforward relations between
allowed values and planned values for each timeline. By construc-
tion, we have a one-to-one mapping between flexible plan behaviors
and automata evolutions: for each evolution in Plan ∪ SV, a corre-
sponding behavior in P exists and vice versa. On one hand, any pos-
sible behavior in Plan ∪ SV but not in a flexible plan, would violate
temporal timepoint plan constraints. On the other hand, any possi-
ble flexible plan behavior in P but not in Plan ∪ SV, would violate
automata guards or invariants. The Observer automaton checks for
both values consistency (between planned timelines and state vari-
ables) and synchronizations satisfaction. While value consistency is
trivial, again by construction, the Observer holds the error location
whenever a transition guard is activated, that is, whenever the related
flexible behavior violates the associated synchronization. On the op-
posite, whenever a flexible behavior violates a synchronization, the
related guard is activated, hence enforcing the error location for the
Observer. Thus, PL describes all and only the possible flexible plan
behaviors in P . 2

4 TIME FLEXIBLE PLAN VERIFICATION
In Theorem 1, we demonstrated by construction that we obtain a
one-to-one mapping between flexible behaviors, defined by P , and
automata behaviors, defined by PL, with the Observer automaton
holding the error location if either an illegal value occurs or a syn-
chronization is violated. Thus, the plan verification problem can be
reduced to a Reachability Game by introducing a Reachability Game
RG(PL, Init, Safe, Goal) where Init represents the set of initial lo-
cations, one for each automaton in PL, Safe = {lok}, and Goal is for
the set of goal locations, one for each T Li in PL.

Theorem 2 Given RG(PL, Init, Safe, Goal) defined considering
Init = {q | q is q0 ∈ QT Li ∀T Li ∈ Plan} ∪ {q | q is q0 ∈
QSVi ∀SVi ∈ SV }∪ {q | q is q0 ∈ QObs}, Safe = {lok} and Goal
= {l | l is lgoal ∈ QT Li ∀T Li ∈ Plan}, solving/winning the game
implies plan validity for P .

Sketch of Proof. In Theorem 1, we show that PL describes all
and only the behaviors implemented by the flexible plan P . If
there exists a winning strategy f for RG(PL, Init, Safe,Goal),
then the Outcome(Init, f) represents the subset of Runs(PL) ⊆
WinRuns(Init, f) that guarantees that (i) Goal states are
reached and (ii) Safe states are enforced. Then, each ρ ∈
Outcome(Init, f) reaches all the locations in {l | l is lgoal ∈
QT Li ∀T Li ∈ Plan} while the observer holds lok. As a straight-
forward consequence we have that for each timeline T Li, all the
transitions can be performed by maintaining allowed values (w.r.t.
state variable definition) and without violating any synchronization.
Thus, the plan is valid. 2
Verification in UPPAAL-TIGA. In order to solve RG(PL, Init,
Safe, Goal), we use UPPAAL-TIGA [2] If there is no winning strat-
egy, UPPAAL-TIGA gives a counter strategy for the opponent (en-
vironment) to make the controller lose. Given a nTGA, a set of goal
states (win) and/or a set of bad states (lose), four types of winning
conditions can be issued [2]. Then, to solve the reachability game,
we ask UPPAAL-TIGA to check the formula Φ = A [Safe U Goal]
in PL. In fact, this formula means that along all the possible paths,
PL remains in Safe states until Goal states are reached. Moreover,
recalling the dynamic controllability definition for timelines given in
Section 2.1, we may notice that each possible evolution of the un-
controllable automata corresponds to a timeline projection p. Each
strategy/solution for the RG corresponds to a consistent schedule
T and a set of strategy represents a viable execution strategy S.
Thus, the winning strategies produced by UPPAAL-TIGA represents
a viable execution strategy S for the flexible plan P . Furthermore,
the use of forward algorithms [2] guarantees that S is such that
Sp1{≺ x} = Sp2{≺ x} ⇒ Sp1(x) = Sp2(x), for each control-
lable timepoint x and projections p1 and p2. As a consequence, we
obtain the following Corollary.

Corollary 1 Given RG(PL, Init, Safe, Goal) defined as above and
using UPPAAL-TIGA to find a winning execution strategy S. If
UPPAAL-TIGA solves RG then the flexible plan is dynamically con-
trollable by means of S.

Notice that our approach to dynamic controllability checking relies
on the fact that UPPAAL-TIGA works with forward algorithms.

5 A NEW BENCHMARK DOMAIN
In this section, we present a case study that we use in our experi-
mental analysis. The domain is inspired by a Space Mission Long
Term Planning problem as described in [3]. We consider a remote

space agent (RSA) that operates around a target planet. The RSA can
either point to the planet and use its instruments to produce scien-
tific data or point towards a communication station (Relay Satellite
or Earth) and communicate previously produced data. The RSA is
controlled by a planner and an executive system to accomplish the
required tasks (scientific observations, communication, and mainte-
nance activities). For each orbit followed by the RSA around the
planet, the operations are split with respect to 3 orbital phases: (1) the
pericentre (the orbital segment closest to the target planet); (2) the
apocentre (the orbital segment farthest from the planet); (3) the or-
bital segments between the pericentre and apocentre. Around peri-
centre, the agent should point toward the planet, thus allowing ob-
servations of the planet surface (Science operations). Between peri-
centre and apocentre passages, the agent should point to Earth for
transmitting data. Communication with Earth should occur within
a ground-station availability window. Ground-station visibility can
either partially overlap or fully contain a pericentre passage. Main-
tenance operations should occur around the apocentre passages. The
RSA is also endowed with a set of scientific instruments or payloads
(e.g., stereo cameras, altimeters, spectrometers, etc.) whose activities
are to be planned for during the pericentre phase taking into account
physical constraints. In particular, here we assume that instruments
can be activated one at a time by following a fixed execution se-
quence of operations: warm-up, process, turn-off. Additionally, there
are other constraints to be satisfied. Constraints on uplink windows
frequency and duration require four hours uplink time for each 24
hours, and these uplink windows must be as regular as possible, one
every about 20 hours. Apocentre slots for spacecraft maintenance
windows must be allocated between 2 and 5 orbits apart, and the
maintenance duration is of 90 minutes.

Timeline-based Specification. To obtain a timeline-based specifi-
cation of the domain we use: Planned State Variables representing
the timelines where there are activities under the agent control (they
are planned for by the agent); External State Variables, representing
values imposed over time which can only be observed

stateVar.eps

Figure 1: Transitions for the planned state variables describing the Space-
craft Operative Mode (left) and any of the Instruments (right).

Planned State Variables. A state variable Spacecraft Operative
Mode specifies the observation, communication, and maintenance
opportunities for the agent. In Fig. 1-left, we detail the values that can
be taken by this state variable, their durations, and the allowed value
transitions. Additional planned state variables, called Instrument-1...,
Instrument-n, are introduced to represent the scientific payloads. For
each variable Instrument-i we introduce four values: Warmup, Pro-
cess, Turnoff, and Idle (see Fig. 1-right).

External State Variables. The Orbit Events state variable (Fig. 2,
top) maintains the temporal occurrences of pericentres and apocen-
tres represented by the values: PERI and APO (they have fixed du-
rations). The Ground Station Availability state variables (Fig. 2, bot-
tom) are a family of variables that maintain the visibility of various
ground stations. The allowed values for these state variables are ei-
ther Available or Unavailable.

esempio2.eps

Figure 2: An example of complete plan for the Remote Space Agent domain.
The synchronizations among timelines are highlighted.

Synchronizations constraints. Any valid temporal plan needs syn-
chronizations among the planned timelines (see Fig. 2, middle) and
the external timelines (dotted arrows in Fig. 2). They represent how
(a) science operations must occur during pericentres, i.e., the Sci-
ence value must start and end during a Peri value; (b) maintenance
operations must occur in the same time interval as apocentres, i.e.,
the Maint value is required to start and end exactly when the Apo
value starts and ends; (c) communications must occur during ground
station visibility windows, i.e., the Comm value must start and end
during an Available value on any of the ground stations. As for sci-
entific instruments, we introduce the following constraints: (d) if
Instrument-i is not in Idle then the other instruments need to be
in Idle; (e) the Warmup is before Process which is before Turnoff;
(f) these activities are allowed only when Science is active along the
Operative Mode timeline.

Relaxed constraints. Besides synchronization constraints, we need
to consider other constraints which cannot be naturally represented
in the planning model as structural constraints, but rather treated as
meta-level requirements to be enforced by the planner heuristics and
optimization methods. In our case study, we consider the following
relaxed constraints: (g) Maint must be allocated between 2 and 5
orbits apart with duration of about 90 minutes (to be centered around
the apocentre event); (h) science activities must be maximized, i.e.,
during each pericentre phase a Science event should occur.

6 EXPERIMENTAL EVALUATION
In this section, we analyze the plan verification performances with
respect to temporal flexibility and execution controllability. We de-
ploy our flexible time plan verification method to flexible plans au-
tomatically generated for our real world case study in different sce-
narios and execution contexts checking for dynamic controllability
and relaxed constraints satisfaction. More specifically, we analyze
the performances of our tool varying the following settings: State
variables. Here, we consider three possible configurations: the RSA
endowed with zero, one, or two scientific instruments. This affects
the number of state variables (and synchronization constraints). Flex-
ibility. For each scientific instrument activity (i.e., warm-up, process,
turn-off), we set a minimal duration (i.e. about 2 minutes), but we
allow temporal flexibility on the activity termination, namely, the
end of each activity has a tolerance ranging from 5 to 10 seconds.
E.g. if we set 5 seconds of flexibility, we introduce an uncertainty
on the activity terminations, for instance, the warm-up activity can
take from 120 to 125 seconds. This temporal interval represents the
degree of temporal flexibility that we introduce in the system. Hori-

zon. We consider flexible plans with a horizon length ranging from 3
to 10 mission days. Controllability. We consider four different ex-
ecution contexts: 1) all the instruments activities are controllable;
2) for each instrument the warm-up termination is not controllable;
1) for each instrument, warm-up and process terminations are not
controllable; 4) for each instrument warm-up, process, and turn-off
are not controllable. Note that the higher is the degree of flexibil-
ity/uncontrollability, the larger is the space of allowed behaviors to
be checked, thus, the harder is flexible plan verification. In these set-
tings, we analyze the performance of our tool considering the fol-
lowing issues: model generation, dynamic controllability checking,
domain requirements checking. We run our experiments on a Linux
workstation endowed with a 64-bit AMD Athlon CPU (3.5GHz) and
2GB RAM. In the following we illustrate the collected empirical re-
sults (the reported timings are in seconds).

Model Generation. A first, preliminary, analysis concerns the model
generation process and the dimension of the generated UPPAAL-
TIGA specification. This analysis is needed because the complexity
of the generated UPPAAL-TIGA models can affect the scalability
of the overall verification method. In fact, for this purpose, we de-
veloped a tool that automatically builds the UPPAAL-TIGA model
given the description of the planning domain and the flexible tempo-
ral plan to be checked. Here, we want to assess the size of the gener-
ated model and the generation time with respect to the dimension of
the planning domain and of the plan (state variables and plan length).
In our experimental setting, we consider domain models with an in-
cremental number of state variables (from 3 to 5) and plans with an
incremental number of mission days (from 3 to 10). For each possi-
ble configuration, we consider the dimension of the generated model
and the time elapsed for the generation. For all these configurations,
the generation process is very fast and takes less than 200ms: the di-
mension of the generated model gradually grows with respect to the
dimension of the flexible plan (both in terms of number of timelines
and plan length) from 60 up to (about) 600 automata states with file
size growing from 23kb to 147kb the dimension – in the case of 5
timelines and 10 mission days. In conclusion, the process of model
generation is fast and the generated model grows linearly with the
dimension of the plan, therefore, here the encoding phase is not a
critical step.

Flexible Plan Verification against Controllable Execution. Here,
we collect the time performances (CPU time) of plan verification in
different scenarios (changing the degree of plan flexibility) and exe-
cution contexts (changing the plan controllability). Here, we analyze
the plan verification performances in checking dynamic controllabil-
ity in the easiest condition of controllability. Indeed, in this initial
experimental setting, we consider fully controllable plans assuming
all the scientific tasks to be controllable.

In Fig. 3(a) and Fig. 4(a), we illustrate the results gathered in the
case of one and two instruments, respectively, considering the verifier
performances under different plan length and flexibility conditions.
For all the cases, verification succeeded.

The results in Fig. 3(a) and Fig. 4(a) show that an increment of
temporal flexibility has a limited impact on the performances of the
verification tool. This is particularly evident in the case of a single in-
strument, where the performances of the verification process seems
not affected by the degree of temporal flexibility (Fig. 3(a)). On the
other hand, in the case of 2 scientific instruments (Fig. 3(a)), we can
observe a smooth growth of the verification time with respect to the
allowed temporal flexibility. Of course, this is mainly due to the fact
that in this case the verification process is to check all the synchro-

Full Controllability
days 0s flex 5s flex 10s flex

3 0,198 0,202 0,254
4 0,254 0,301 0,320
5 0,300 0,344 0,328
6 0,192 0,208 0,184
7 0,248 0,240 0,248
8 0,292 0,300 0,284
9 0,348 0,332 0,364
10 0,392 0,364 0,401

(a)

1 Uncontrollable Task
days 0s flex 5s flex 10s flex

3 0,189 0,165 0,193
4 0,227 0,234 0,238
5 0,276 0,296 0,264
6 0,172 0,160 0,168
7 0,212 0,220 0,208
8 0,268 0,248 0,252
9 0,308 0,336 0,336
10 0,356 0,364 0,379

(b)

2 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 0,189 0,192 0,188
4 0,246 0,237 0,245
5 0,296 0,324 0,288
6 0,156 0,164 0,164
7 0,212 0,216 0,212
8 0,260 0,263 0,264
9 0,316 0,288 0,336

10 0,345 0,321 0,335

(c)

3 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 0,198 0,221 0,212
4 0,267 0,283 0,267
5 0,304 0,288 0,288
6 0,188 0,172 0,176
7 0,212 0,208 0,220
8 0,252 0,236 0,248
9 0,312 0,300 0,332

10 0,367 0,353 0,379

(d)
Figure 3: One instrument varying flexibility and controllability.

nization constraints among the instruments, which are not considered
in the case of a single instrument. However, even thought the incre-
ment of temporal flexibility enlarges the number of behaviors to be
checked, in the presence of fully controllable activities a single exe-
cution trace is sufficient to show plan controllability, hence the veri-
fication task is reduced to correct plan termination checking.

Flexible Plan Verification against Partially Controllable Execu-
tion. In the following, we consider the verifier performances in
checking dynamic controllability in the presence of uncontrollable
activities. Interestingly, also in this setting the execution time for ver-
ification grows in a gradual manner. In the case of a single scientific
instrument, the gathered results (see Fig. 3b-c-d) are comparable with
the ones collected in the fully controllable case. Even when we con-
sider a setting where all the tasks are uncontrollable, our verification
tool can easily accomplish plan verification for all the flexibility and
plan length configurations (see Fig. 3(d)). In the case of 2 instru-

Full Controllability
days 0s flex 5s flex 10s flex

3 0,899 2,010 2,673
4 1,123 3,101 3,200
5 1,664 3,508 3,312
6 2,756 3,780 3,396
7 3,704 4,368 4,528
8 4,492 5,080 5,088
9 5,300 5,896 6,724

10 5,934 6,234 7,243

(a)

1 Uncontrollable Task
days 0s flex 5s flex 10s flex

3 1,784 2,998 3,021
4 2,132 3,156 3,103
5 2,784 3,280 3,248
6 2,892 3,252 3,312
7 3,664 4,384 4,500
8 4,232 5,096 5,212
9 5,492 6,492 6,716

10 6,357 7,093 7,732

(b)

2 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 2,022 3,105 3,227
4 2,214 3,326 3,339
5 2,444 3,452 3,548
6 2,652 3,212 3,328
7 3,612 4,412 4,464
8 4,200 4,879 5,208
9 5,300 5,876 6,812

10 6,604 7,012 8,002

(c)

3 Uncontrollable Tasks
days 0s flex 5s flex 10s flex

3 2,243 3,143 3,004
4 2,527 3,340 3,122
5 2,880 3,528 3,052
6 2,628 3,404 3,704
7 3,604 4,252 4,284
8 4,212 4,668 4,98
9 5,176 6,088 6,384

10 6,392 7,478 8,244

(d)
Figure 4: Two instruments varying flexibility and controllability.

ments (5 timelines), the increment of flexibility gradually increments
the time needed by the verification tool to verify the plans (see Fig.
4b-c-d). A similar increment can be observed when we increase the
number of uncontrollable activities. If we keep constant the uncon-
trollable activities, the performances trend appears similar to the one
of the fully controllable case. Nevertheless, even if we consider the
worst case, i.e. all the activities uncontrollable and maximal temporal
flexibility, the performances of the UPPAAL-TIGA verification tool
are still very satisfactory: given flexible plans with horizon length up
to 10 mission days and 5 timelines, plan verification can be success-
fully accomplished within few seconds (see Fig. 4(d)).

Flexible Plan Verification against Relaxed Domain Constraints.
We also perform tests to verify other domain-dependent constraints,
namely, the two relaxed constraints on maintenance and science ac-
tivities introduced in Section 5. In this experimental setting, we as-
sume the system endowed with 2 scientific instruments (5 timelines).
In Fig. 5, we report the experimental results collected increasing the
degree of uncontrollability on the considered flexible plans. Chang-

ing the plan flexibility, the verifier presents performances that are
analogous to the ones reported in the previous case. Thus, the addi-
tional properties to be checked provide a low additional overhead to
the verification process.

experiment1.eps

Figure 5: Relaxed constraints: changing flexibility and controllability.

7 CONCLUSION
This work presents a verification process suitable for a timeline-
based planner and shows how a temporally flexible plan verification
problem can be cast as model-checking on timed game automata.
A formal account has been provided to demonstrate that our
method is appropriate to both represent and verify flexible plans
using TGA and UPPAAL-TIGA. Then, we have introduced a
realistic benchmark. The experimental results collected in this
domain demonstrate the feasibility of our method and the ef-
fectiveness of UPPAAL-TIGA in a real world setting. Despite
the increasing complexity of the verification configurations, the
execution time gradually grows with the complexity of the task.
Furthermore, the concurrent increase of temporal flexibility and
plan uncontrollability does not determine the expected computa-
tional overhead. The UPPAAL-TIGA verifier can effectively handle
the flexible plan verification task in all the considered configurations.

Acknowledgements. Cesta, Fratini, Orlandini and Tronci are partially sup-
ported by EU under the ULISSE project (Contract FP7.218815). Cesta, Fratini and Or-
landini are partially supported by MIUR under the PRIN project 20089M932N (funds
2008) and by the European Space Agency (ESA).

REFERENCES
[1] Y. Abdedaim, E. Asarin, M. Gallien, F. Ingrand, C. Lesire, and

M. Sighireanu, ‘Planning Robust Temporal Plans: A Comparison Be-
tween CBTP and TGA Approaches’, in ICAPS-07, pp. 2–10, (2007).

[2] G. Behrmann, A. Cougnard, A. David, E. Fleury, K.G. Larsen, and
D. Lime, ‘UPPAAL-TIGA: Time for playing games!’, in CAV, (2007).

[3] A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi, ‘MRSPOCK: Steps
in Developing an End-to-End Space Application’, Computational In-
telligence, (2010). Accepted for publication.

[4] A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and E. Tronci, ‘Flexible
Timeline-Based Plan Verification’, in KI-09, LNAI 5803, (2009).

[5] EUROPA, ‘Europa Software Distribution Web Site’.
https://babelfish.arc.nasa.gov/trac/europa/, 2008.

[6] L. Khatib, N. Muscettola, and K. Havelund, ‘Mapping Temporal Plan-
ning Constraints into Timed Automata’, in TIME-01, (2001).

[7] O. Maler, A. Pnueli, and J. Sifakis, ‘On the Synthesis of Discrete Con-
trollers for Timed Systems’, in STACS-95, (1995).

[8] P. H. Morris and N. Muscettola, ‘Temporal Dynamic Controllability
Revisited’, in AAAI-05, (2005).

[9] N. Muscettola, ‘HSTS: Integrating Planning and Scheduling’, in In-
telligent Scheduling, ed., Zweben, M. and Fox, M.S., M.Kauffmann,
(1994).

[10] R. Sherwood, B Engelhardt, G. Rabideau, S. Chien, and R. Knight,
‘ASPEN, Automatic Scheduling and Planning Environment’, Technical
Report D-15482, JPL, (2000).

[11] T Vidal and H Fargier, ‘Handling Contingency in Temporal Constraint
Networks: From Consistency To Controllabilities’, JETAI, 11(1), 23–
45, (1999).

