
plan2tiga User Guide

M. Cialdea Mayer1 and A. Orlandini2

1Università degli Studi di Roma Tre
2Istituto di Scienze e Tecnologie della Cognizione CNR Roma

1 Introduction

The program plan2tiga implements the encoding of �exible plans into net-
works of timed game automata (TGA), according to the syntax accepted by
Uppaal-Tiga, that can therefore be called on the �les generated by plan2tiga
in order to check whether the corresponding plan is dynamically controllable
and, if so, generate a strategy for robust plan execution.

A �exible plan Π is a pair 〈FTL,R〉, where FTL is a set of �exible time-
lines (some of which may represent the evolution of external state variables,
modeling components of the system that are completely outside the control of
the executive), and R is a set of relations between tokens of the timelines in
FTL. The related concepts are introduced in [1], and extended in order to
treat uncertainty. Tokens are in fact annotated by a controllability tag: the
exact duration of a controllable token can be decided by the controller (obvi-
ously respecting the bounds on its end point and duration), while the end time
of uncontrollable tokens is under the control of the environment. An external
timeline is made up of uncontrollable tokens only, while planned timelines may
contain both controllable and uncontrollable tokens.

The encoding allows also the modeling of �partial plans�, where timelines
may have unde�ned temporal slots, i.e. tokens without value and possibly with
no associated duration (called unallocated tokens). This allows the planner to
interact with the Uppaal-Tiga veri�er during plan construction, and possibly
abandon routes that would lead to plans that cannot be executed.

The details of the encoding are described in Section 4, where arguments are
also given to prove its correctness.

Let Π = 〈FTL,R〉 be a �exible plan and N the network of automata (an
Uppaal-Tiga system) modeling Π. In the encoding generated by plan2tiga,
each automaton Ax (an Uppaal-Tiga process) in N models a timeline FTLx ∈
FTL, and every token of FTLx is modeled by a location (an Uppaal-Tiga

state) in the corresponding automaton Ax. Moreover, Ax has a �nal state,
called �nish, that is reached at the end of the timeline. The Uppaal-Tiga

winning condition is a pure reachability one, expressed by an Uppaal-Tiga

formula of the form

A♦(Ax1
.finish ∧ · · · ∧ Axk

.finish)

where N = {Ax1
, . . . ,Axk

}: whichever the behaviour of uncontrollable compo-
nents, the automata in N can reach their �nal states (at the same time).

1

2 How to call plan2tiga

plan2tiga takes in input a �le describing a �exible plan and encodes it into
the language of Uppaal-Tiga. The program is called with the syntax

plan2tiga [options] <filename>

The syntax of the �le given in input is described in Section 3. The program out-
puts an Uppaal-Tiga �le de�ning a system and the related query �le, named,
by default, <filename>.xta and <filename>.q.

The possible options are:

-debug When called with this option, the query �le generated by plan2tiga

corresponds to the formula:

A♦Ax1
.finish ∧ · · · ∧ A♦Axk

.finish

This allows, when the plan results not to be dynamically controllable, to
single out the timelines that may not reach their �nal state.

-v (verbose mode): the program prints a list of the primitive relations into
which the de�nde ones are translated (see Section 3).

3 Syntax of the input �le

Comments are included between /* and */, or from # to carriage return. Key-
words are not case sensitive.

Below, <int> is a sequence of digits, and <name> a string (di�erent from key-
words) made up of alphanumeric characters and the underscore, and beginning
with an alphabetic character.

<file> ::= "horizon" "=" <int>

<plan>

<observation>

<plan> ::= "plan" "{"

<timeline list> /* planned timelines */

<relation list>

"}"

<observation> ::= "observation" "{"

<timeline list> /* external timelines */

"}"

<timeline list> ::= "timelines" "{"

<timeline> <timeline>*

"}"

<timeline> ::= <name> /* state variable name */

"{"

<token> <token>*

"}"

<token> ::= "token" <int> /* token identifier */

<tag> /* controllability tag */

"{"

<name> /* value */

2

<interval> /* end time */

<interval> /* duration */

"}"

| "unallocated" <int>

"{"

<interval> /* end time */

<interval> /* duration */

"}"

| "unallocated" <int>

"{"

<interval> /* end time */

"}"

<tag> ::= "controllable" | "uncontrollable"

<interval> ::= "[" <int> "," <int> "]"

<relation list> ::= "" /* no constraints */

| "relations" "{"

<relation> <relation>*

"}"

<relation> ::= <token id> <rel 1> <token id>

| <token id> <rel 2> <int>

<token id> ::= <name> <int>

/* name=state variable name */

<rel 1> ::= /* primitive relations */

"start_before_start" <interval+inf>

| "end_before_end" <interval+inf>

| "start_before_end" <interval+inf>

| "end_before_start" <interval+inf>

/* defined relations */

| "equals"

| "meets"

| "met_by"

| "before" <interval+inf>

| "after" <interval+inf>

| "overlaps" <interval+inf> <interval+inf>

| "overlapped_by" <interval+inf> <interval+inf>

| "contains" <interval+inf> <interval+inf>

| "during" <interval+inf> <interval+inf>

| "starts" <interval+inf>

| "started_by" <interval+inf>

| "finishes" <interval+inf>

| "finished_by" <interval+inf>

| "contains_start" <interval+inf> <interval+inf>

| "contains_end" <interval+inf> <interval+inf>

| "starts_during" <interval+inf> <interval+inf>

| "ends_during" <interval+inf> <interval+inf>

<rel 2> ::= /* primitive relations */

starts_before <interval+inf>

| starts_after <interval+inf>

| ends_before <interval+inf>

3

| ends_after <interval+inf>

/* defined relations */

| "starts_at"

| "ends_at"

<interval+inf> ::= <interval>

| "[" <int> "," "infty" "]"

The semantics of the relations is given in Section 3.1 and an abstract de-
scription of the encoding and its properties is given in Section 4.

The plan has to satisfy the following condition: each integer used as a token
identi�er must be di�erent from the others in the same timeline.

If the end time of the last token of a timeline is not equal to the plan
horizon, plan2tiga adds a last unallocated time slot to the timeline, reaching
the horizon.

The description of a sample plan is given in Figure 1.

horizon = 350

plan {

timelines {

pm { token 1 { earth [10,20] [10,20] }

unallocated 2 { [110,130] [100,110] }

token 4 { slewing [140,160] [30,30] }

token 5 { science [190,200] [40,50] }

unallocated 6 { [230,250] }

token 8 uncontrollable

{ comm [260,300] [30,50] }

token 9 {earth [350,350] [50,90] } }

no other planned state variables

}

relations { gv 5 contains [0,infty][0,infty] pm 8

pm 1 starts_at 0

pm 5 end_before_start [0,50] pm 8 }

}

observation {

timelines {

gv { token 1 { visible [60,100] [60,100] }

token 2 { not_visible [90,130] [1,100] }

token 3 { visible [150,190] [60,100] }

token 4 { not_visible [210,250] [1,100] }

token 5 { visible [300,320] [60,100] }

token 6 { not_visible [350,350] [1,100] } }

}

}

Figure 1: A sample plan, with two unallocated tokens

3.1 Semantics of the primitive and de�ned relations

The semantics of the primitive relations is de�ned as follows. If A = [bA, eA]
and B = [bB , eB] are time intervals, with bA, eA, bB , eB ∈ N, the semantics
of the relation A r [lb, ub]B, with r ∈ { start_before_start, end_before_end,

4

start_before_end, end_before_start}, lb ∈ N and ub ∈ N ∪ {∞}, is given in
the following table.

the relation holds if
A start_before_start [lb, ub]B lb ≤ bB − bA ≤ ub
A end_before_end [lb, ub]B lb ≤ eB − eA ≤ ub
A start_before_end [lb, ub]B lb ≤ eB − bA ≤ ub
A end_before_start [lb, ub]B lb ≤ bB − eA ≤ ub

If A = [b, e] is a time interval, with b, e ∈ N, the semantics of the relation
A r [lb, ub] t, with r ∈ {starts_before, starts_after, ends_before, ends_after},
t, lb ∈ N and ub ∈ N ∪ {∞}, is given in the following table.

the relation holds if
A starts_before [lb, ub] t lb ≤ t− b ≤ ub
A starts_after [lb, ub] t lb ≤ b− t ≤ ub
A ends_before [lb, ub] t lb ≤ t− e ≤ ub
A ends_after [lb, ub] t lb ≤ e− t ≤ ub

The other relations are de�ned in terms of the primitive ones, as shown in
Table 1.

4 Encoding of �exible plans as Uppaal-Tiga sys-

tems

This section is devoted to describe how a plan 〈FTL,R〉 is encoded as an
Uppaal-Tiga system. The encoding establishes an injective mapping µ from
tokens of FTL to states of processes of the corresponding system N , and a
correspondence can be consequently estabilished between scheduled timelines
and runs, according to the following de�nition.

De�nition 1. A run ρ of N corresponds to a set of scheduled timelines TL, and
vice-versa, if for every state µ(xi) of N , ρ enters µ(xi) at time t = start_time(xi)
and exits µ(xi) at time t = end_time(xi).

The encoding is correct and complete:

Theorem 1. Let Π = 〈FTL,R〉 be a �exible plan, and let N be the Uppaal-Tiga
system modeling Π. Then every instance of Π corresponds to a run of N , and
every run of N corresponds to an instance of Π.

Morever, for every token xi of N , xi is uncontrollable if and only if the
(only) link exiting from µ(xi) is uncontrollable.

Below, the encoding generated by plan2tiga is de�ned, and arguments are
given step by step showing that Theorem 1 holds.

The encoding allows also the modeling of �partial plans�, where timelines
may have unde�ned temporal slots, i.e. are tokens without value and possibly
with no associated duration. In what follows, we treat such �holes� in a timeline
like tokens, calling them unallocated when needing to make the distinction.

The Uppaal-Tiga system has a set of global clocks: plan_clock, whose
value corresponds to the time elapsed since the beginning of the execution, and

5

the relation is de�ned as
A equals B A start_before_start [0, 0]B and

A end_before_end [0, 0]B
A meets B A end_before_start [0, 0]B
A met_by B B meets A

A before [lb, ub]B A end_before_start [lb, ub]B
A after [lb, ub]B B before [lb, ub]A

A overlaps [lb1, ub1][lb2, ub2]B A start_before_start [lb1, ub1]B and
A end_before_end [lb2, ub2]B and
B start_before_end [0,∞]A

A overlapped_by [lb1, ub1][lb2, ub2]B B overlaps [lb1, ub1][lb2, ub2]A
A contains [lb1, ub1][lb2, ub2]B A start_before_start [lb1, ub1]B and

B end_before_end [lb2, ub2]A
A during [lb1, ub1][lb2, ub2]B B contains [lb1, ub1][lb2, ub2]A

A starts [lb, ub]B A start_before_start [0, 0]B and
A end_before_end [lb, ub]B

A started_by [lb, ub]B B starts [lb, ub]A
A finishes [lb, ub]B A start_before_start [lb, ub]B and

A end_before_end [0, 0]B
A,finished_by [lb, ub]B B finishes [lb, ub]A

A contains_start [lb1, ub1][lb2, ub2]B A start_before_start [lb1, ub1]B and
B start_before_end [lb2, ub2]A

A contains_end [lb1, ub1][lb2, ub2]B A start_before_end [lb1, ub1]B and
B end_before_end [lb2, ub2]A

A starts_during [lb1, ub1][lb2, ub2]B B contains_start [lb1, ub1][lb2, ub2]A
A ends_during [lb1, ub1][lb2, ub2]B B contains_end [lb1, ub1][lb2, ub2]A

A starts_at t A starts_before [0, 0]t
A ends_at t A ends_before [0, 0]t

Table 1: Semantics of the de�ned temporal relations

a clock for every relation between two tokens belonging toR. Moreover, a global
constant H is used, whose value is strictly greater than the plan horizon.

As already said, the Uppaal-Tiga system is made up of processes modeling
the timelines in FTL. Every process has a ��nal state�, finish, and, in order
to check whether the system models a dynamically controllable plan, and, if
so, to generate a controllable execution strategy, the Uppaal-Tiga winning
conditions are pure reachability ones, expressed by the Uppaal-Tiga formula

A♦(Ax1 .finish ∧ · · · ∧ Axk
.finish)

where FTL = {FTLx1
, . . . , FTLxk

} andAxi
is the automaton modeling FTLxi

:
whichever the behaviour of uncontrollable components, the automata in N can
reach their �nal states.

6

4.0.1 Representation of timelines

Each timeline FTLx corresponds to an Uppaal-Tiga process Ax, and the
mapping µ maps every token of FTLx to a state of Ax. The main properties of
Ax are the following:

1. the states of Ax are {start, finish} ∪ {µ(xi) | xi is a token of FTLx};

2. the initial state of Ax is start;

3. every state of Ax has exactly one incoming edge, except for start, that
has none;

4. every state of Ax has exactly one outgoing edge, except for finish, that
has none;

5. there is an edge in Ax from start to µ(x1), where x1 is the �rst token of
FTL and there is an edge in Ax from µ(xk) to finish, where xk is the
last token of FTL;

6. for every pair of consecutive tokens xi and xi+1 in FTL, there is an edge
from µ(xi) to µ(xi+1) in Ax. Moreover, if xi is uncontrollable (which
holds, in particular, if x is an external variable), then the transition from
µ(xi) to µ(xi+1) is uncontrollable, too.

The process Ax has a local clock clockx, that is reset every time a state is
entered and checked before exiting, in order to control the state duration.

The role of start and finish is to make every other state have an incoming
and an outgoing edge. They are associated no invariant. For any token xi of
the state variable x, with end_time(xi) = (e, e′) and duration(xi) = (d, d′), the
corresponding state µ(xi) has the invariants plan_clock ≤ e′ and, if d′ 6= ∞,
clockx ≤ d′. If xi is an unallocated token with no duration constraints, the
invariant clockx ≤ d′ is obviously omitted.

As described below, the local clock clockx is reset on the edge entering each
state, therefore its value when exiting µ(xi) represents the duration of the token
xi. The invariants thus ensure that:

• system runs do not exit µ(xi) before (global) time e′;

• system runs do not exit µ(xi) before d′ time units have elapsed since the
run has entered µ(xi).

The core of the transitions of the process Ax is described next (other guards
and assigments can be added to transitions, in order to model relations, as spec-
i�ed in Section 4.0.2). The transitions from start and to finish are considered
separately.

While showing which guards and clock resettings are associated with the
chain of transitions start → x1 → . . . xk → finish, we also inductively show
that every schedule of FTLx corresponds to a run of Ax and vice versa: if the
begin and and time of a scheduled token xi are t and t′, respectively, then the
guards on the transition allow a run to enter the state µ(xi) at time t and exit
it at time t′. Conversely, if a run of Ax enters the state µ(xi) at time t and exits
it at time t′, then there is a schedule of FTLx where the begin and end time of
xi are t and t′, respectively.

7

1. Let x1 be the �rst token of the timeline. The edge start → µ(x1) has
the guard plan_clock = 0, therefore any run ρ of Ax enters µ(x1) at time
0 = start_time(x1); correspondingly, the start time of the �rst token in
any schedule TLx of FTLx is 0.

2. Let xi and xi+1 be two consecutive tokens of FTLx, with end_time(xi) =
(e, e′) and duration(xi) = (d, d′). Then the edge µ(xi)→ µ(xi+1) has the
guards

plan_clock ≥ e and clockx ≥ d
Moreover, the local clock is reset:

clockx := 0

If xi is uncontrollable (which holds, in particular, if x is an external vari-
able), then the edge µ(xi) → µ(xi+1) is uncontrollable, too. If xi is an
unallocated token with no duration constraints, then the guard on clockx
is omitted.

Since clockx is reset when a run enters µ(xi), its value when the run exits
µ(xi) is equal to the time the run stays in µ(xi). I.e. it represents the
duration of the corresponding scheduled token.

Now, if TLx is a schedule of FLTx, with start_time(xi) = t and end_time(xi) =
t′, then e ≤ t′ ≤ e′ and d ≤ t′ − t ≤ d′. The guards on µ(xi) → µ(xi+1)
and the invariants of µ(xi) (plan_clock ≤ e′ and, possibly, clockx ≤ d′)
allow a run of Ax to exit µ(xi) (and enter µ(xi+1)) when the value of the
plan clock is t′ and the value of clockx is t′ − t.
Conversely, if a run of Ax enters µ(xi) when the value of the plan clock
is t and exits µ(xi) when plan_clock = t′ and clockx = d∗, then forcely
e ≤ t′ ≤ e′ and d ≤ d∗ ≤ d′. Since d∗ = t′ − t, the values t and t′ respect
the conditions e ≤ t′ ≤ e′ and d ≤ t′ − t ≤ d′, required for a schedule of
FTLx.

3. Let xk be the last token of the timeline, with end_time(xk) = (e, e′)
and duration(xk) = (d, d′). If x is an external variable, then the edge
µ(xk) → finish has only the guard plan_clock ≥ e. If x is a planned
variable, then the edge µ(xk) → finish has the guards plan_clock ≥ e
and clockx ≥ d.
It is worth noticing that the last transition of the system is controllable,
since otherwise the Uppaal-Tiga game could not be won.

If x is a planned variable, the correspondence between schedules and runs
can be proved like in case 2. Otherwise, the constraints on the end time t′

of a schedule of xk whose start time is t are only e ≤ t′ ≤ e′ and t′−t ≤ d′.
The absence of the guard clockx ≥ d allows a run of Ax to exit the last
token of the (external) timeline even when clockx (i.e. t′ − t) is less than
d. And conversely, if a run exits µ(xk) when the value of clockx is smaller
than d, such a value is still a legal duration for xk.

4.0.2 Encoding of the relations

Relations between a token and a time point are quite simple to be encoded by
use of the plan clock.

8

• The relation xi starts_before[lb,ub] t is encoded by adding the guards plan_clock ≤
t− lb and plan_clock ≥ t− ub to the edge entering µ(xi).

In every instance of the plan, the start time b of the schedule of xi lies in
the interval [t − lb, t − ub]. Therefore the guard doesn't prevent a run of
Ax to enter µ(xi) at time b. Conversely, if a run of Ax enters µ(xi) at a
given time b, then b ∈ [t − lb, t − ub], therefore there is an instance of xi

starting at b.

• The relation xi ends_before[lb,ub] t is encoded by adding the guards plan_clock ≤
t− lb and plan_clock ≥ t− ub to the edge exiting µ(xi).

The reasoning showing the correspondence between runs and instances
of the plan is similar to the previous case, but for the fact that the end
time/exit time are considered.

• The relation xi starts_after[lb,ub] t is encoded by adding the guards plan_clock ≥
t+ lb and plan_clock ≤ t+ ub to the edge entering µ(xi).

In every instance of the plan, the start time b of the schedule of xi lies in
the interval [t + lb, t + ub]. Therefore the guard doesn't prevent a run of
Ax to enter µ(xi) at time b. Conversely, if a run of Ax enters µ(xi) at a
given time b, then b ∈ [t + lb, t + ub], therefore there is an instance of xi

starting at b.

• The relation xi ends_after[lb,ub] t is encoded by adding the guards plan_clock ≥
t+ lb and plan_clock ≤ t+ ub to the edge exiting µ(xi).

The reasoning showing the correspondence between runs and instances
of the plan is similar to the previous case, but for the fact that the end
time/exit time are considered.

In order to model relations between two tokens, a global clock is de�ned for
each of them, and a constant H greater than the plan horizon is used to initialize
them. A relation R of the form xn r [lb,ub] y

k is enforced by resetting the clock
clockR associated to R on the edge entering/exiting µ(xn) and checked by the
guard on the edge entering/exiting µ(yk). Whether the incoming or outgoing
edges are concerned depends on the particular relation r .

The primitive relations have the form xn start/end_before_start/end[lb,ub] y
k,

i.e. the token at the left of the relation starts or ends before the rightmost one
starts or ends. The clock clockR corresponding to a relation of the above form is
reset on the link entering (if the relation has the form xn start_before_start/end[lb,ub] y

k)

or exiting (if it has the form xn end_before_start/end[lb,ub] y
k) the state µ(xn).

A guard checking the value of clockR is placed on the link entering (if R has
the form xn start/end_before_start[lb,ub] yk) or exiting (if it has the form

xn start/end_before_end[lb,ub] y
k) µ(yk).

When clockR is reset, its value is set equal toH. It must in fact be guaranteed
that guards concerning a relation clock clockR are not satis�ed when the relation
is not. So, the value H greater than the plan horizon is used to reset relation
clocks (without explicit assignment no clock could reach H during any run).

In detail, when the clock clockR is reset, it is assigned the value H: clockR :=
H. If the bound of the relation R is the interval [lb, ub], then the guards asso-

9

ciated with the relation are H + lb ≤ clockR and (if ub 6=∞) clockR ≤ H + ub.
The di�erent cases are:

• The relation R is xn start_before_start[lb,ub] y
k. Then clockR is assigned

the value H on the edge entering µ(xn) and the guards associated to R
are placed on the edge entering µ(yk).

We show the correspondence between runs and instances of the plan in
this case, the others being similar. In every instance of the plan, if the
start time of the schedule of xn is tn and the start time of the schedule of
yk is tk, then it must be lb ≤ tk − tn ≤ ub. If a run enters µ(xn) at time
tn, the value of clockR at time tk is H + (tk − tn). From lb ≤ tk − tn ≤ ub
it follows that H+ lb ≤ H+(tk− tn) ≤ H+ub. therefore the guard allows
the run to actually enter µ(yk) at time tn.

Conversely, if a run enters µ(xn) at time tn and enters yk at time tk, the
value of clockR when it enters µ(yk) is H + (tk − tn). Therefore, since
the guard is satis�ed, H + lb ≤ H + (tk − tn) ≤ H + ub, which implies
lb ≤ tk − tn ≤ ub. As a consequence, a schedule of FTL where the start
time of the schedule of xn is tn and the start time of the schedule of yk is
tk satis�es the relation R.

• The relation R is xn start_before_end[lb,ub] y
k. Then clockR is assigned

the value H on the edge entering µ(xn) and the guards are placed on the
edge exiting µ(yk).

• The relation R is xn end_before_start[lb,ub] y
k. Then clockR is assigned

the value H on the edge exiting µ(xn) and the guards are placed on the
edge entering µ(yk).

• The relation R is xn end_before_end[lb,ub] y
k. Then clockR is assigned

the value H on the edge exiting µ(xn) and the guards are placed on the
edge exiting µ(yk).

5 Encoding example

This section shows how the sample plan given in Figure 1 is encoded.

5.0.3 System �le

clock plan_clock, R1_clock, R2_clock, R4_clock;

const int H = 700;

process pm ()

{

clock pm_clock;

state

start,

pm1 { plan_clock <= 20 and pm_clock <= 20 },

pm2 { plan_clock <= 130 and pm_clock <= 110 },

pm4 { plan_clock <= 160 and pm_clock <= 30 },

pm5 { plan_clock <= 200 and pm_clock <= 50 },

10

pm6 { plan_clock <= 250 },

pm8 { plan_clock <= 300 and pm_clock <= 50 },

pm9 { plan_clock <= 350 and pm_clock <= 90 },

finish;

init start;

trans

start -> pm1 { guard plan_clock==0; },

pm1 -> pm2 { guard plan_clock >= 10 and pm_clock >= 10;

assign pm_clock := 0; },

pm2 -> pm4 { guard plan_clock >= 110 and pm_clock >= 100;

assign pm_clock := 0; },

pm4 -> pm5 { guard plan_clock >= 140 and pm_clock >= 30;

assign pm_clock := 0; },

pm5 -> pm6 { guard plan_clock >= 190 and pm_clock >= 40;

assign pm_clock := 0,

R4_clock := H ; },

pm6 -> pm8 { guard plan_clock >= 230 and pm_clock >= 0

and R4_clock >= H + 0 and R4_clock <= H + 50

and R1_clock >= H + 0;

assign pm_clock := 0; },

pm8 -u-> pm9 { guard plan_clock >= 260 and pm_clock >= 30;

assign pm_clock := 0,

R2_clock := H ; },

pm9 -> finish { guard plan_clock >= 350 and pm_clock >= 50; }

;

}

process gv ()

{

clock gv_clock;

state

start,

gv1 { plan_clock <= 100 and gv_clock <= 100 },

gv2 { plan_clock <= 130 and gv_clock <= 100 },

gv3 { plan_clock <= 190 and gv_clock <= 100 },

gv4 { plan_clock <= 250 and gv_clock <= 100 },

gv5 { plan_clock <= 320 and gv_clock <= 100 },

gv6 { plan_clock <= 350 and gv_clock <= 100 },

finish;

init start;

trans

start -> gv1 { guard plan_clock==0;

assign plan_clock := 0, gv_clock := 0 ;},

gv1 -u-> gv2 { guard plan_clock >= 60 and gv_clock >= 60;

assign gv_clock := 0; },

gv2 -u-> gv3 { guard plan_clock >= 90 and gv_clock >= 1;

assign gv_clock := 0; },

gv3 -u-> gv4 { guard plan_clock >= 150 and gv_clock >= 60;

assign gv_clock := 0; },

gv4 -u-> gv5 { guard plan_clock >= 210 and gv_clock >= 1;

11

assign gv_clock := 0,

R1_clock := H ; },

gv5 -u-> gv6 { guard plan_clock >= 300 and gv_clock >= 60

and R2_clock >= H + 0;

assign gv_clock := 0; },

gv6 -> finish { guard plan_clock >= 350; }

;

}

system gv, pm;

5.0.4 Query �le

control: A<> (pm.finish && gv.finish)

5.0.5 Query �le with the -debug option

control: A<>pm.finish

control: A<>gv.finish

References

[1] Marta Cialdea Mayer, Andrea Orlandini, and Alessandro Umbrico. A formal
account of planning with �exible timelines. In Temporal Representation and
Reasoning (TIME), 2014 21st International Symposium on, pages 37�46,
2014.

12

	Introduction
	How to call plan2tiga
	Syntax of the input file
	Semantics of the primitive and defined relations

	Encoding of flexible plans as Uppaal-Tiga systems
	Representation of timelines
	Encoding of the relations

	Encoding example
	System file
	Query file
	Query file with the -debug option

