
A Tableaux Based Decision Procedure

for a Broad Class of Hybrid Formulae

with Binders

Serenella Cerrito Marta Cialdea Mayer

Lab. Ibisc Dipart. Informatica e Automazione

Université d’Evry Val d’Essonne, Università di Roma Tre

France Italy

This is a draft version of a paper published on the Proceedings of
TABLEAUX 2011. It should not be cited, quoted or reproduced.

Abstract

In this paper we provide the first (as far as we know) direct calculus
deciding satisfiability of formulae in negation normal form in the fragment
of hybrid logic with the satisfaction operator and the binder, where no
occurrence of the 2 operator is in the scope of a binder. A preprocessing
step, rewriting formulae into equisatisfiable ones, turns the calculus into
a satisfiability decision procedure for the fragment HL(@, ↓) \2↓2, i.e.
formulae in negation normal form where no occurrence of the binder is
both in the scope of and contains in its scope a 2 operator.

The calculus is based on tableaux, where nominal equalities are treated
by means of substitution, and termination is achieved by means of a form
of anywhere blocking with indirect blocking. Direct blocking is a relation
between nodes in a tableau branch, holding whenever the respective labels
(formulae) are equal up to (a proper form of) nominal renaming. Indirect
blocking is based on a partial order on the nodes of a tableau branch,
which arranges them into a tree-like structure.

1 Introduction

The Hybrid Logic HL(@, ↓) is an extension of modal (propositional, possibly
multi-modal) logic K by means of three constructs: nominals (propositions
which hold in exactly one state of the model), the satisfaction operator @ (al-
lowing one to state that a given formula holds at the state named by a given
nominal), and the binder ↓, accompanied by state variables, which allows one
to give a name to the current state (see [2] for an overview of the subject).

The satisfiability problem for formulae of basic Hybrid Logic HL(@) (without
the binder)1 is decidable, and it stays decidable even with the addition of other

1The notation HL(Op1, ..., Opn) is commonly used to denote the extension of modal logic
K by means of the operators Op1...Opn. In particular, HL(@, ↓,E,3−) and HL(@,E,3−)

1



operators, such as the global and converse modalities. On the contrary, an
unrestricted addition of the binder causes a loss of decidability [1, 3].

However, similarly to what happens for first order logic, one can obtain
decidable fragments of hybrid logic with the binder by imposing syntactic re-
strictions on the way formulae are built. Some decidability results are proved in
[13], which considers full Hybrid Logic HL(@, ↓,E,3−), that will henceforth be
abbreviated as FHL. In that work it is proved that the source of undecidability
is the occurrence of a specific modal pattern in formulae in negation normal form
(NNF). A pattern π is a sequence of operators, and a formula is a π-formula,
where π = Op1...Opn, if it is in NNF and contains some occurrence of Op1
that contains in its scope an occurrence of Op2, that in turn has in its scope
an occurrence of Op3, etc. For simplicity, moreover, when the 2 operator is
used in a pattern, it actually stands for any universal operator, i.e. one of the
modalities 2,2− or A. In particular, a 2↓-formula is a hybrid formula in NNF
where some occurrence of the binder is in the scope of a universal operator; a
↓2-formula is a hybrid formula in NNF where some occurrence of a universal
operator is in the scope of a binder; and a 2↓2-formula is a hybrid formula in
NNF containing a universal operator in the scope of a binder, which in turn
occurs in the scope of a universal operator. Finally, if π is a pattern, the frag-
ment HL(Op1, ..., Opk) \ π is constituted by the class of NNF hybrid formulae
in HL(Op1, ..., Opk) excluding π-formulae.

The main decidability result on syntactic restrictions proved in [13] is the
following:

1. The satisfiability problem for FHL \2↓2 is decidable.

This result is tight, in the sense that there is no pattern π that contains 2↓2
as a subsequence and such that the satisfiability problem for FHL \ π is still
decidable. Therefore, the fragment FHL \2↓2 is particularly interesting.

For the aim of the present work, it is important to recall the intermediate
results allowing [13] to prove 1:

2. The satisfiability problem for FHL \ 2↓ is decidable. This is proved by
showing that there exists a satisfiability preserving translation from FHL \
2↓ to HL(@,E,3−). The translation is obtained by first replacing any
occurrence of the binder by a full existential quantification over states
(i.e. ↓x.F is replaced by ∃x(x∧F )); in the resulting formula, no existential
quantifier is in the scope of a universal operator, so that the existential
quantifiers can be moved in front of the formula, and, finally, they are
skolemized away by use of fresh nominals.

3. The satisfiability problem for FHL \↓2 is decidable. This holds because the
standard translation ST of FHL into first order classical logic [1, 13] maps
formulae in the considered fragment into universally guarded formulae [13],
that have a decidable satisfiability problem [8].

Result 1 easily follows from 2 and 3. Let in fact F be any formula in
FHL \2↓2. Any occurrence of the binder that contains in its scope a universal
operator is not, in its turn, in the scope of a universal operator. Therefore it

include the existential global modality E (and its dual A) and the converse operator 3− (and
its dual 2−).

2



can be skolemized away like in the proof of 2. Repeating this transformation
for every ↓2-subformula of F , an equisatisfiable formula F ′ is obtained, where
no occurrence of a universal operator is in the scope of a binder. Satisfiability
of F ′ can be decided because of result 3.

The above sketched approach to proving result 1 shows also that any decision
procedure for formulae in FHL \↓2 can easily be turned into a decision procedure
for formulae in the largest fragment FHL \2↓2, by preprocessing formulae.

Satisfiability of formulae in the fragment FHL \ ↓2 can be tested by transla-
tion, by use of any calculus for the guarded fragment, such as the tableau calculi
defined in [9, 10], or the decision procedure based on resolution given in [7]. The
translation can be obtained in polynomial time [13], hence the theoretical com-
plexity does not increase. However, in practice, the overhead coming from the
translation cannot be completely ingnored. In fact, the standard translation of
F is a universally guarded formula, which has to be rewritten into an equisat-
isfiable guarded one [8]. Moreover, decision procedures for guarded logic such
as the above mentioned ones apply to constant-free formulae. Since formulae
obtained from the translation may in general contain constants (deriving from
nominals), a further rewriting would be necessary to eliminate them [8, 12].

Beyond the generally recognized interest of having direct calculi for modal
logics, we therefore consider that the problem of defining direct decision proce-
dures for decidable fragments of hybrid logics deserves a specific attention.

In this paper we provide the first (as far as we know) direct calculus deciding
satisfiability of formulae in HL(@, ↓) \ ↓2. A preprocessing step, rewriting a
formula into an equisatisfiable one, like explained above, turns the calculus into
a satisfiability decision procedure for HL(@, ↓) \2↓2.

The work is organized as follows. In the rest of this section we recall the
syntax and semantics of HL(@, ↓). In Section 2 we define the tableau system, and
section 3 contains a brief outline of the termination and completeness proofs,
whose details can be found in [6]. Section 4 concludes this work, and includes a
comparison of some aspects of our work with techniques already present in the
literature.

Hybrid Logic.

Let PROP (the set of propositional letters) and NOM (the set of nominals) be
disjoint sets of symbols. Let VAR be a set of state variables. Hybrid formulae
F in HL(@, ↓) are defined by the following grammar:

F := p | a | x | ¬F | F ∧ F | F ∨ F | 3F | 2F | t : F | ↓x.F

where p ∈ PROP, a ∈ NOM, x ∈ VAR and t ∈ VAR ∪ NOM. In this work, the
notation t : F is used rather than the more usual one @tF . We use metavariables
a, b, c, possibly with subscripts, for nominals, while x, y, z are used for variables.

A formula of the form a : F is called a satisfaction statement, whose out-
ermost nominal is a and F is its body. The operator ↓ is a binder for state
variables. A variable x is free in a formula if it does not occur in the scope of a
↓x. A formula is ground if it contains no free variables.

A subformula of a formula F is a substring of F (possibly F itself) that
is itself a formula. An instance of a formula F is an expression obtained by
replacing every free variable of F with some nominal.

3



An interpretation M is a triple 〈W,R,N, I〉 where W is a non-empty set
(whose elements are the states of the interpretation), R ⊆ W ×W is a binary
relation on W (the accessibility relation), N is a function NOM → W and I a
function W → 2PROP. We shall write wRw′ as a shorthand for 〈w,w′〉 ∈ R.

A variable assignment σ for M is a function VAR → W . If x ∈ VAR and
w ∈W , the notation σwx stands for the variable assignment σ′ such that: σ′(y) =
σ(y) if y 6= x and σ′(x) = w.

If M = 〈W,R,N, I〉 is an interpretation, w ∈W , σ is a variable assignment
for M and F is a formula, the relation Mw, σ |= F is inductively defined as
follows:

1. Mw, σ |= p if p ∈ I(w), for p ∈ PROP.

2. Mw, σ |= a if N(a) = w, for a ∈ NOM.

3. Mw, σ |= x if σ(x) = w, for x ∈ VAR.

4. Mw, σ |= ¬F if Mw, σ 6|= F .

5. Mw, σ |= F ∧G if Mw, σ |= F and Mw, σ |= G.

6. Mw, σ |= F ∨G if either Mw, σ |= F or Mw, σ |= G.

7. Mw, σ |= a : F if MN(a), σ |= F , for a ∈ NOM.

8. Mw, σ |= x : F if Mσ(x), σ |= F , for x ∈ VAR.

9. Mw, σ |= 2F if for each w′ such that wRw′, Mw′ , σ |= F .

10. Mw, σ |= 3F if there exists w′ such that wRw′ and Mw′ , σ |= F .

11. Mw, σ |= ↓x.F if Mw, σ
w
x |= F .

A formula F is satisfiable if there exist an interpretation M, a variable
assignment σ forM and a state w ofM, such thatMw, σ |= F . Two formulae
F and G are logically equivalent (F ≡ G) when, for every interpretation M,
assignment σ and state w of M, Mw, σ |= F if and only if Mw, σ |= G.

It is worth pointing out that, if t ∈ VAR ∪ NOM and F is a formula:

¬(t : F ) ≡ t : ¬F ¬↓x.F ≡ ↓x.¬F ¬3F ≡ 2¬F ¬2F ≡ 3¬F

This allows one to restrict attention to formulae in negation normal form (NNF).

2 The Tableau Calculus

A tableau branch is a sequence of nodes n0, n1, ..., where each node is labelled by
a ground satisfaction statement in NNF, and a tableau is a set of branches. If
n occurs before m in the branch B, we shall write n < m. The label of the node
n will be denoted by label(n). The notation (n) a : F will be used to denote the
node n, and simultaneously say that its label is a : F .

A tableau for a formula F is initialized with a single branch, constituted by
the single node (n0) a0 : F , where a0 is a new nominal. The formula a0 : F is
the initial formula of the tableau, which is assumed to be ground and in NNF.

4



A tableau is expanded by application of the rules in Table 1, which are
applied to a given branch. Their reading is standard: a rule is applicable if
the branch contains a node (two nodes) labelled by the formula(e) shown as
premiss(es) of the rules. The rules ∧,@, ↓,2 and 3 add one or two nodes to the
branch, labelled by the conclusion(s); the rule ∨ replaces the current branch B
with two branches, each of which is obtained by adding B a new node, labelled,
respectively, by the formula shown on the left and right below the inference line.

a : (F ∧G)

a : F
a : G

(∧) a : (F ∨G)

a : F | a : G
(∨)

a : b : F
b : F

(@)
a : ↓x.F
a : F [a/x]

(↓)

[B]
a : b

B[b/a]
(=)

(not applicable if a = b)

a : 2F a : 3b
b : F

(2)

a : 3F

a : 3b
b : F

(3)

where b is a new nominal
(not applicable if F is a nominal)

Table 1: Expansion rules

The 2 rule has two premisses, which must both occur in the branch, in
any order. The leftmost premiss of the 2 rule is called its major premiss, the
rightmost one its minor premiss. The minor premiss is a relational formula, i.e.
a satisfaction statement of the form a : 3b (where b is a nominal). A formula of
the form 2F is called a universal formula. The 3 rule is called blockable rule,
a formula of the form a : 3F , where F is not a nominal, is a blockable formula
and a node labelled by a blockable formula is a blockable node.

If F is a formula, the notation F [a/x] is used to denote the formula that is
obtained from F replacing a for every free occurrence of the variable x. Analo-
gously, if a and b are nominals, F [b/a] is the formula obtained from F replacing
b for every occurrence of a. The equality rule (=) does not add any node to the
branch, but modifies the labels of its nodes. The schematic formulation of this
rule in Table 1 indicates that it can be fired whenever a branch B contains a
nominal equality of the form a : b (with a 6= b); as a result of the application of
the rule, every node label F in B is replaced by F [b/a].

The first node of a branch B is called the top node and its label the top
formula of B. The nominals occurring in the top formula are called top nominals.
Note that the notion of top nominal is relative to a tableau branch. In fact,
applications of the equality rule may change the top formula, hence the set of
top nominals.

In the following definition, the current branch is left implicit, so as to lighten
the notation.

5



Definition 1. If a node n is added to a branch by application of the rule R to
the node m then we write m ;R n. In the case of rules with two conclusions,
we write m ;R (n, k), or, sometimes, m ;R n and m ;R k. In the case of
the two premisses rule 2 we write (m, k) ;2 n.

Note that the application of the equality rule does not change nodes, but
only their labels, therefore it does not change the relation ;R between nodes,
for any rule R.

We say that a formula a : F occurs in a tableau branch B (or a : F ∈ B) if
for some node n of the branch, label(n) = a : F . Similarly, a nominal occurs
in a branch B if it occurs in the label of some node of B. Finally, a nominal a
labels a formula F in B if a : F ∈ B.

Termination is achieved by means of a loop-checking mechanism using nom-
inal renaming. In fact, in the presence of the binder, non-top nominals may
occur in the body of any node label. In order to define this mechanism, some
preliminary definitions are necessary.

Definition 2 (Nominal compatibility and mappings). If B is a tableau branch
and a is a nominal occurring in B, then

ΦB(a) = {p | p ∈ PROP and a : p ∈ B} ∪ {2F | a : 2F ∈ B}

If a and b are nominals occurring in a tableau branch B, then a and b are
compatible in B if ΦB(a) = ΦB(b), i.e. if they label the same propositions in
PROP and the same universal formulae.

A mapping π for a branch B is an injective function from non-top nominals
to non-top nominals such that for all a, a and π(a) are compatible in B.

A mapping π for B maps a formula F to a formula G if:

1. π(F ) = G;

2. π is the identity for all nominals which do not occur in F .

A formula F can be mapped to a formula G in B if there exists a mapping
π for B mapping F to G.

Since a mapping π is the identity almost everywhere, it can be represented
by a finite set of pairs of the form {b1/a1, ..., bn/an} where ai 6= bi, whenever
π(ai) = bi and π(c) = c for all c 6∈ {a1, ..., an}.

The application of the blockable rule is restricted by blocking conditions: a
direct blocking condition, which forbids the application of the blockable rule to
a node n, whenever the label of a previous node can be mapped to label(n);
and also an indirect blocking condition. In fact, since a node may be (directly)
blocked in a branch after that it has already been expanded, all the nodes which,
in some sense, depend from that expansion must be blocked too. So, a notion of
indirect blocking is needed, which in turn requires a new partial order on nodes.
The following definition introduces a binary relation on nodes, which organizes
them into a family of trees.

Definition 3. Let B be a tableau branch. The relation n ≺B m between nodes
of B is inductively defined as follows:

Base case If n;3 (m, k), then n ≺B m and n ≺B k;

6



Inductive cases If m ≺B n, then:

1. if n;R k, where R ∈ {∨,@, ↓,∧}, then m ≺B k;

2. if label(n) is a relational formula and for some n′, (n′, n) ;2 k, then
m ≺B k.

If m ≺B n then n is said to be a child of m w.r.t. ≺B, and m the parent of n.
A node n in B is called a root node if it has no parent. Two nodes n and k are
called siblings if either both of them are root nodes, or for some m, m ≺B n and
m ≺B k.

The relation ≺+
B is the transitive closure of ≺B. If n ≺+

B m, then n is an
ancestor of m and m a descendant of n w.r.t. ≺B.

In other terms, when the blockable rule is applied to a node n, a first pair
of children of n w.r.t. ≺B is generated. The application of rules other than 3

generates siblings, where, in the case of the two premisses rule 2, it is the minor
premiss which is added a sibling. Intuitively, when n ≺B m, n is the node which
is taken to be the main “responsible” of the presence of m in the branch. In
fact, the first “children” of a node n are nodes obtained from n by application of
the blockable rule. And, if a node m is obtained from m′ (as the minor premiss,
in the case of the 2 rule) by means of applications of non-blockable rules, then
they are “siblings” w.r.t. ≺B.

Example 1. As an example, consider the tableau branch for

F = a : (3p ∧2↓x.3(p ∧ ¬x ∧ ↓y.a : 3y))

represented in Figure 1. Node numbering reflects the order in which nodes are
added to the branch. The right column reports the ;R relation justifying the
addition of the corresponding node to the branch. W.r.t. the relation ≺B, 0, 1
and 3 are root nodes with no children; 2 is also a root node, with children 4, 5, 6
and 7; nodes 8–17 are all children of 7.

(0) a0 : a : (3p ∧ 2↓x.3(p ∧ ¬x ∧ ↓y.a : 3y))
(1) a : (3p ∧ 2↓x.3(p ∧ ¬x ∧ ↓y.a : 3y)) 0 ;@ 1
(2) a : 3p 1 ;∧ 2
(3) a : 2↓x.3(p ∧ ¬x ∧ ↓y.a : 3y) 1 ;∧ 3
(4) a : 3b 2 ;3 4
(5) b : p 2 ;3 5
(6) b : ↓x.3(p ∧ ¬x ∧ ↓y.a : 3y) (3, 4) ;2 6
(7) b : 3(p ∧ ¬b ∧ ↓y.a : 3y) 6 ;↓ 7
(8) b : 3c 7 ;3 8
(9) c : p ∧ ¬b ∧ ↓y.a : 3y 7 ;3 9
(10) c : p ∧ ¬b 9 ;∧ 10
(11) c : ↓y.a : 3y 9 ;∧ 11
(12) c : p 10 ;∧ 12
(13) c : ¬b 10 ;∧ 13
(14) c : a : 3c 11 ;↓ 14
(15) a : 3c 14 ;@ 15
(16) c : ↓x.3(p ∧ ¬x ∧ ↓y.a : 3y) (3, 15) ;2 16
(17) c : 3(p ∧ ¬c ∧ ↓y.a : 3y) 16 ;↓ 17

Figure 1: A tableau branch for a : (3p ∧2↓x.3(p ∧ ¬x ∧ ↓y.a : 3y))

The relation ≺B enjoys the following important properties:

7



1. For each node n in a tableau branch B, there exists at most one node m
such that m ≺B n. Therefore, there is exactly one maximal chain

n1 ≺B n2 ≺B ... ≺B nk = n

where n1 is any root node.

2. If for some n, m ≺B n, then m is a blockable node. Therefore, for any
chain

n1 ≺B n2 ≺B ... ≺B nk ≺B nk+1

n1, ..., nk are all blockable nodes.

Consequently, ≺B arranges the nodes of a branch into a forest of trees, where
non-terminal nodes are blockable nodes.

We can now define the notions of direct and indirect blocking.

Definition 4 (Direct and indirect blocking). A node (n) a : 3F is directly
blocked by (m) b : 3G in B if

• m < n, m is neither directly blocked in B nor it has any ancestor w.r.t.
≺B which is directly blocked in B;

• b : G can be mapped to a : F in B.

A node n is directly blocked in B if it is blocked by some m in B, and it is
indirectly blocked in B if it has an ancestor w.r.t. ≺B which is directly blocked in
B. An indirectly blocked node is called a phantom node (or, simply, a phantom).

The tableau branch B represented in Figure 1 represents a blocking case:
node 17 is blocked by 7, because b e c are compatible (ΦB(b) = ΦB(c) = {p}).

It must be remarked that the blocking relation is dynamic, i.e. blockings
are not established forever, since they are relative to a tableau branch, and can
be undone when expanding the branch. In fact, a node may be blocked in a
branch B and then unblocked after expanding B, because the addition of new
nodes or changes in node labels may destroy nominal compatibility. Possibly,
a new blocking can be introduced (but compatibilities must be checked again),
by means of a different mapping.

The application of the expansion rules is restricted by the following condi-
tions:

Definition 5 (Restrictions on the expansion rules). The expansion of a tableau
branch B is subject to the following restrictions:

R1. no node labelled by a formula already occurring in B as the label of a non-
phantom node is ever added to B;

R2. a blockable node n cannot be expanded if there are k0, k1 ∈ B such that
n;3 (k0, k1);

R3. a phantom node cannot be expanded by means of a single-premiss rule, nor
can it be used as the minor premiss of the 2 rule;

R4. a blockable node cannot be expanded if it is directly blocked in B.

8



It is worth pointing out that termination would not be guaranteed if restric-
tion R1 were replaced by the condition that a node (or pair of nodes) is never
expanded more than once on the branch.

A branch is closed whenever it contains, for some nominal a, either a pair of
nodes (n) a : p, (m) a : ¬p for some p ∈ PROP, or a node (n) a : ¬a. As usual,
we assume that a closed branch is never expanded further on. A branch which
is not closed is open. A branch is complete when it cannot be further expanded.
For instance, the tableau branch represented in Figure 1 is complete and open.

This section concludes with some further examples. In each of them, B
denotes the considered branch, and the notation Bn is used to denote the branch
segment up to node n, while Φn abbreviates ΦBn

.

Example 2. Figure 2 represents a closed one-branch tableau for

F = (3↓x.3(x : p)) ∧ (3↓y.3(y : ¬p)) ∧ (3↓z.(3(z : p) ∧3(z : ¬p)))

where the first applications of the ∧-rule are collapsed into one.

(0) a0 : F
(1) a0 : 3↓x.3x : p 0 ;∧ 1
(2) a0 : 3↓y.3y : ¬p 0 ;∧ 2
(3) a0 : 3↓z.(3(z : p)

∧3(z : ¬p)) 0 ;∧ 3
(4) a0 : 3a 1 ;3 4
(5) a : ↓x.3x : p 1 ;3 5
(6) a : 3a : p 5 ;↓ 6
(7) a : 3a1 6 ;3 7
(8) a1 : a : p 6 ;3 8
(9) a : p 8 ;@ 9

(10) a0 : 3b 2 ;3 10
(11) b : ↓y.3y : ¬p 2 ;3 11
(12) b : 3b : ¬p 11 ;↓ 12
(13) b : 3b1 12 ;3 13

(14) b1 : b : ¬p 12 ;3 14
(15) b : ¬p 14 ;@ 15
(16) a0 : 3c 3 ;3 16
(17) c : ↓z.(3(z : p)

∧3(z : ¬p)) 3 ;3 17
(18) c : 3c : p ∧3c : ¬p 17 ;↓ 18
(19) c : 3c : p 18 ;∧ 19
(20) c : 3c : ¬p 18 ;∧ 20
(21) c : 3c1 19 ;3 21
(22) c1 : c : p 19 ;3 22
(23) c : p 22 ;@ 23
(24) c : 3c2 20 ;3 24
(25) c2 : c : ¬p 20 ;3 25
(26) c : ¬p 25 ;@ 26

Figure 2: Example 2

The relation ≺B in this branch can be described as follows: 0–3 are root
nodes, 1 ≺B {4, 5, 6}, 6 ≺B {7, 8, 9}, 2 ≺B {10, 11, 12}, 12 ≺B {13, 14, 15},
3 ≺B {16, 17, 18, 19, 20}, 19 ≺B {21, 22, 23}, 20 ≺B {24, 25, 26}.2

The branch is closed because of nodes 23 and 26. In B20, node 19 is not
blocked by 6, since a : 3a : p cannot be mapped to c : 3c : p because c and a are
not compatible in B20 (Φ20(c) = Ø 6= {p} = Φ20(a)); therefore, node 19 can be
expanded. In the same branch segment, on the contrary, node 20 is blocked by
12, because Φ20(c) = Ø = Φ20(b).

When the construction proceeds, expanding the non-blocked node 19, and
nodes 21–23 are added to the branch, c and b are no more compatible (Φ23(c) =
{p} while Φ23(b) is still empty), so node 20 is unblocked and it is expanded,
producing 24–26 and the branch closes.

Note moreover that, after the addition of node 23, a and c become compatible,
so that in B23 node 19 is blocked by 6, and 21–23 are phantom nodes. Since 20
is not a descendant of 19 w.r.t. ≺B, it is not a phantom, thus it can be expanded.

2n ≺B {m1, ...,mk} abbreviates n ≺B m1 and ... n ≺B mk.

9



Example 3. This example shows the need of indirect blocking (restriction R3)
to ensure termination. Let

F = a : ((2↓x.3↓y.(x : p ∧ a : 3y)) ∧3q)

Figure 3 shows a complete branch in a tableau for F .

(1) a0 : F
(2) a : ((2↓x.3↓y.

(x : p ∧ a : 3y)) ∧3q) 1 ;@ 2
(3) a : 2↓x.3↓y.

(x : p ∧ a : 3y) 2 ;∧ 3
(4) a : 3q 2 ;∧ 4
(5) a : 3b 4 ;3 5
(6) b : q 4 ;3 6
(7) b : ↓x.3↓y.

x : p ∧ a : 3y) (3, 5) ;2 7
(8) b : 3↓y.(b : p ∧ a : 3y) 7 ;↓ 8
(9) b : 3b1 8 ;3 9

(10) b1 : ↓y.(b : p ∧ a : 3y) 8 ;3 10
(11) b1 : (b : p ∧ a : 3b1) 10 ;↓ 11
(12) b1 : b : p 11 ;∧ 12
(13) b1 : a : 3b1 11 ;∧ 13
(14) b : p 12 ;@ 14
(15) a : 3b1 13 ;@ 15
(16) b1 : ↓x.3↓y.

(x : p ∧ a : 3y) (3, 15) ;2 16

(17) b1 : 3↓y.(b1 : p ∧ a : 3y) 16 ;↓ 17
(18) b1 : 3b2 17 ;3 18
(19) b2 : ↓y.(b1 : p ∧ a : 3y) 17 ;3 19
(20) b2 : (b1 : p ∧ a : 3b2) 19 ;↓ 20
(21) b2 : b1 : p 20 ;∧ 21
(22) b2 : a : 3b2 20 ;∧ 22
(23) b1 : p 21 ;@ 23
(24) a : 3b2 22 ;@ 24
(25) b2 : ↓x.3↓y.

(x : p ∧ a : 3y) (3, 24) ;2 25
(26) b2 : 3↓y.(b2 : p ∧ a : 3y) 25 ;↓ 26
(27) b2 : 3b3 26 ;3 27
(28) b3 : ↓y.(b2 : p ∧ a : 3y) 26 ;3 28
(29) b3 : (b2 : p ∧ a : 3b3) 28 ;↓ 29
(30) b3 : b2 : p 29 ;∧ 30
(31) b3 : a : 3b3 29 ;∧ 31
(32) b2 : p 30 ;@ 32
(33) a : 3b3 31 ;@ 33

Figure 3: Example 3.

The relation ≺B in this branch can be described as follows: the root nodes are
1–4, 4 ≺B {5, ..., 8}, 8 ≺B {9, ..., 17}, 17 ≺B {18, ..., 26} and 26 ≺B {27, ..., 33}.

In B17 node 17 is not blocked by 8 because Φ17(b) = {q, p} 6= Ø = Φ17(b1).
And it is not blocked by 8 in Bn for any n ≥ 23 either, where Φn(b) = {q, p} 6=
{p} = Φn(b1). Moreover in B26 node 26 is blocked neither by 8 nor by 17,
because Φ26(b) = {q, p}, Φ26(b1) = {p}, and Φ26(b2) = Ø.

But in B33 node 26 is blocked by 17, because Φ33(b1) = {p} = Φ33(b2).
Therefore, its children w.r.t. ≺B33 , i.e. 27–33 are all phantom nodes, and, in
particular, node 33 cannot participate, with node 3, to an expansion via the 2

rule.
Without restriction R3, the construction of the branch would go on forever.

In fact, the following nodes could be added:

(34) b3 : ↓x.3↓y.(x : p ∧ a : 3y) (3, 33) ;2 34
(35) b3 : 3↓y.(b3 : p ∧ a : 3y) 34 ;↓ 35

In B35 node 35 would not be blocked, because Φ35(b3) = Ø, while Φ35(b1) =
Φ35(b2) = {p}. So a sequence of new nodes could be added, with labels obtained
from the labels of 27–34, by renaming b2 with b3 and b3 with a new nominal b4.
A neverending story ...

3 Properties of the Calculus

The tableau calculus defined in Section 2 is trivially sound. Moreover it ter-
minates and can be proved complete, provided that the initial formula is in the

10



HL(@, ↓) \ ↓2 fragment. Since space restrictions do not allow for a full account
of the termination and completeness proofs, which are in some points quite sub-
tle, this section gives only a brief and simplified outline of these proofs. Their
details can be found in [6].

For the purposes of proving termination and completeness, the main property
of the considered fragment is that, if 2G is a subformula of the initial formula,
it contains no free variable. As a consequence, for any node label of the form
a : 2G, G does not contain any non-top nominal. In other terms, 2G is a
subformula of the top formula of the branch (strong subformula property).

A looser subformula property holds for node labels in general: if a : F is
the label of some node in a tableau branch B, then F is an instance of some
subformula F ′ of the top formula of B, i.e. F is obtained from F ′ by replacing
the free variables occurring in F ′ with nominals (loose subformula property).

Termination is proved by showing that the nodes of a branch B are arranged
by ≺B into a bounded sized set of trees, each of which has bounded width and
bounded depth. Hence any tableau branch B has a number of nodes that is
bounded by a function of the size N of the initial formula.

The above statement is proved by use of the following intermediate results:

1. The number of siblings w.r.t. ≺B of any node n is bounded by a function
of N . This is not as trivial a task as it may appear at first sight. In
fact, it is not sufficient to show that the number of formulae that can
label the siblings of a given node is bounded, because, in principle, a
given formula might be the label of an infinite number of nodes. In fact,
notwithstanding restriction R1, distinct node labels can become equal by
effect of substitution.

However, it can be shown that the label of any sibling of n has a matrix
taken from a bounded stock of formulae, that can be built in the language
of the branch at the time n is added to it. Node labels with a same
matrix are always equal, at any construction stage of the branch, since they
are obtained from the same formula (matrix) by application of the same
nominal renaming. Since siblings always have the same phantom/non-
phantom state, restrictions R1 and R3 ensure that any node can only
produce a bounded number of siblings.

Note that the above sketched reasoning would not work if it were the
major premiss of the 2 rule to be added a sibling w.r.t. ≺B. In fact, a
node labelled by a universal formula can in principle produce an infinite
number of expansions.

2. The length of any chain of nodes n1 ≺B n2 ≺B ... ≺B nk is bounded by
a function of N . This is due to the “loose” subformula property and the
fact that the set of elements in PROP ∪ {2G | 2G occurs in some node
label} is bounded by N (by the “strong” subformula property). Therefore,
restrictions R2 and R4 ensure that the blockable rule cannot be applied
to extend any chain of nodes beyond a given depth.

It is worth pointing out that the considerations underlying the termination
argument in [6] establish a doubly exponential upper bound on the number
of nodes in a tableau branch. Therefore, the decision procedure defined in this
paper is not worst-case optimal, since the satisfiability problem for HL(@, ↓) \↓2
is in 2-ExpTime [13].

11



Completeness is proved in the standard way, by showing how to define a
model of the initial formula from a complete and open tableau branch. However,
for the calculus defined in this work, the fact that the labels of blocked and
blocking nodes are not identical must be taken into account. A model cannot
be simply built from a set of states consisting of equivalence classes of nominals,
and establishing that two nominals are in the same class whenever some blocking
mapping maps one to the other. In fact, it might be the case that a nominal a
is mapped to a nominal b to block a given node, although the branch contains
a node labelled by a : ¬b (like in Example 1).

Thus, a different approach is followed, showing that a (possibly infinite)
model can be built out of a complete and open branch B by means of a pre-
liminary infinitary extension N∞B of a subset N 0 of B. More precisely, N 0 is
the union of the non-phantom nodes in B and the nodes (n) a : F where either
F ∈ PROP or F has the form 2G.
N∞B is built by stages, as the union of a (possibly infinite) series of extensions

N 0 ⊆ N 1 ⊆ N 2.... of N 0. The purpose of each stage is the creation of a
witness for a given blockable node, where a nominal b is called a witness for a
node labelled by a blockable formula of the form a : 3F if there exist nodes
labelled, respectively, by a : 3b and b : F . Each sequence of (labelled) nodes
N i is associated a blocking relation Bi, containing triples of the form (n,m, π),
where n and m are nodes, m < n and π is an injective mapping such that
π(label(m)) = label(n). The construction ensures that:

1. for any (n,m, π) ∈ Bi:

(a) n and m are labelled by blockable formulae;

(b) m ∈ N 0 and it has a witness in N 0.

2. For any blockable node n ∈ N i, if n has no witness in N i, then (n,m, π) ∈
Bi, for some m and π.

Each extension N i is built so as to add a witness to the first “blocked” node
n ∈ N i−1, i.e. such that for some m and π, (n,m, π) ∈ Bi−1. The label of each
new node added to N i is obtained from a node in N 0 by suitably renaming non-
top nominals. Specifically, an injective mapping θi is defined, that will guide
the construction of the new nodes of N i. The mapping θi is the identity except
for the following cases:

• if a occurs in label(m), then θi(a) = π(a);

• if b is the witness of m and b does not occur in label(m), then θi(b) = bi,
where bi is a fresh nominal. Note that, at the time the witness of m was
added to the branch by an application of the 3 rule, it was obviously fresh
w.r.t. to the current branch, but it may subsequently have been replaced
by the equality rule.

The sequence N i is then obtained from N i−1 by adding new nodes, labelled by
θi(label(k)) for each k ∈ N 0 such that θi(label(k)) does not already occur in
N i−1. Hence, in particular, a pair of nodes is added, representing the fact that
bi is the witness of n in N i.

Consistently, the triple (n,m, π) is removed from the blocking relation. Pos-
sibly, new nodes with no witness are created; for each of them, a blocking node
and blocking mapping are defined, and the corresponding triple is added to Bi.

12



Each of the sets of nodes N i enjoys a form of saturation property: it is
consistent (there are no labels of the form a : ¬a, or both a : p and a : ¬p), it
does not contain non-trivial equalities (a : b with a 6= b, so that the equality
rule does not need to be taken into account), and, for any node or pair of nodes
in N i that could be the premiss(es) of some expansion rule other than 3, its
expansion(s) are also in N i.

The proof of such a saturation property exploits the following (non trivial)
properties of the construction:

• If i > 0 and θi is the mapping used to extend N i−1 to N i, then for any
nominal a, a and θi(a) are compatible in N i;

• for every triple (n,m, π) ∈ Bi and for any nominal a, a and π(a) are
compatible in N i.

In the union N∞B =
⋃
i∈INN i every blockable node has a witness, and a

model can be defined from it, made up of a state for each nominal occurring in
N∞B . Such a model can easily be extended to a model of the initial formula.

4 Concluding Remarks

In this work a tableau calculus for HL(@, ↓) is defined, which is provably termi-
nating (independently of the rule application strategy) and complete for formu-
lae belonging to the fragment HL(@, ↓) \↓2. A preprocessing step transforming
formulae into equisatisfiable ones turns the calculus into a satisfiability decision
procedure for HL(@, ↓) \2↓2.

The main features of the calculus can be summarized as follows. A tableau
branch is a sequence of nodes, each of which is labelled by a satisfaction state-
ment. Since nominal equalities are dealt with by means of substitution, dif-
ferent occurrences of the same formula may occur as labels of different nodes
in a branch. The fact that when two formulae become equal by the effect of
substitution the corresponding nodes do not collapse, allows for the definition
of a binary relation ≺B on nodes which organizes them into a family of trees.
Each tree of the family has a bounded width, and this is due to the fact that,
when applying the two premisses 2 rule, it is the minor premiss, labelled by a
relational formula, which is taken to be the “main responsible” of the expansion.

The fact that each tree has a bounded depth is guaranteed by a blocking
mechanism which forbids the application of the 3 rule to a node n whenever
it has already been applied to another node whose label is equal to the label
of n, modulo non-top nominal renaming (accompanied by suitable restrictions).
Renaming is essential, because, in the presence of the binder, non-top nominals
may occur in the body of any node label. The blocking mechanism is anywhere
blocking, paired with indirect blocking, relying on the relation ≺B.

This mechanism differs from [4, 5], where calculi for hybrid logic with the
global and converse modalities (and no binders) are defined. In fact, such cal-
culi adopt ancestor blocking, where nominals (and not nodes) are blocked, and
indirect blocking relies on a partial order on nominals (instead of nodes). Dif-
ferently from [5], moreover, the calculus defined in this work does not require
nominal deletion to ensure termination. This is due, again, to the fact that a
branch is not a set of formulae, but a sequence of nodes.

13



Also the tableau system defined in [11] for hybrid logic with the difference
and converse modalities makes use of ancestor blocking, relying on an ances-
tor relation among nominals. The blocking mechanism used for converse free
formulae in the same work is different and more similar to ours. In fact, an
existential formula, such as, for instance, a : 3F , is blocked (independently of
its outermost nominal a) whenever there exists a nominal b labelling both F and
every formula G such that a : 2G is in the branch. However, the sub-calculus
does not terminate unless applications of the 2 rule are prioritized.

A tableau calculus testing satisfiability of formulae in the constant-free clique
guarded fragment has been proposed in [9]. A restriction of the algorithm to the
guarded fragment has been defined and implemented [10]. A tableau branch,
in these calculi, is a tree of nodes, and the label of each node is a set of for-
mulae. A node is directly blocked by a previously created node if, essentially,
their labels are the same modulo constant renaming. Our comparison modulo
renaming method was in fact originally inspired by [9, 10] (although there are
some differences). A further contact point between these calculi and ours is
anywhere blocking coupled with indirect blocking (which, in [9, 10] relies on the
ancestor relation in the tree).

We are presently working at the next natural step, i.e. the extension of the
calculus to the global and converse modalities, so as to obtain a tableau based
decision procedure for the fragment HL(@, ↓,E,3−) \2↓2.

References

[1] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for
hybrid logics. In J. Flum and M. Rodŕıguez-Artalejo, editors, Computer
Science Logic, volume 1683 of LNCS, pages 307–321. Springer, 1999.

[2] C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, F. Wolter,
and J. van Benthem, editors, Handbook of Modal Logics, pages 821–868.
Elsevier, 2007.

[3] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Lan-
guage and Information, 4:251–272, 1995.

[4] T. Bolander and P. Blackburn. Termination for hybrid tableaus. Journal
of Logic and Computation, 17(3):517–554, 2007.

[5] S. Cerrito and M. Cialdea Mayer. Nominal substitution at work with the
global and converse modalities. In L. Beklemishev, V. Goranko, and V. She-
htman, editors, Advances in Modal Logic, volume 8, pages 57–74. College
Publications, 2010.

[6] S. Cerrito and M. Cialdea Mayer. A calculus for a decidable fragment of hy-
brid logic with binders. Technical Report RT-DIA-181-2011, Dipartimento
di Informatica e Automazione, Università di Roma Tre, 2011. Available
at http://www.dia.uniroma3.it/Plone/ricerca/technical-reports/

2011.

[7] H. Ganzinger and H. De Nivelle. A superposition decision procedure for
the guarded fragment with equality. In Proc. 14th Symposium on Logic in
Computer Science, pages 295–305. IEEE Computer Society Press, 1999.

14



[8] E. Grädel. On the restraining power of guards. Journal of Symbolic Logic,
64:1719–1742, 1998.

[9] C. Hirsch and S. Tobies. A tableau algorithm for the clique guarded frag-
ment. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev,
editors, Advances in Modal Logic, volume 3, pages 257–277. CSLI Publica-
tions, 2001.

[10] J. Hladik. Implementation and evaluation of a tableau algorithm for the
guarded fragment. In U. Egly and C. G. Fermüller, editors, Proc. of the Int.
Conf. on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2002), volume 2381 of LNAI, pages 145–159. Springer, 2002.

[11] M. Kaminski and G. Smolka. Terminating tableau systems for hybrid logic
with difference and converse. Journal of Logic, Language and Information,
18(4):437–464, 2009.

[12] B. ten Cate and M. Franceschet. Guarded fragments with constants. Jour-
nal of Logic, Language and Information, 14:281–288, 2005.

[13] B. ten Cate and M. Franceschet. On the complexity of hybrid logics with
binders. In L. Ong, editor, Proc. of Computer Science Logic 2005, volume
3634 of LNCS, pages 339–354. Springer, 2005.

15


