
Linear Temporal Logic as an Executable

Semantics for Planning Languages

Marta Cialdea Mayer Carla Limongelli
Andrea Orlandini Valentina Poggioni

Università degli Studi di Roma TRE

This is a draft version of a paper appeared on the Journal of
Logic, Language and Information. It should not be cited, quoted
or reproduced.

Abstract

This paper presents an approach to artificial intelligence planning
based on linear temporal logic (LTL). A simple and easy-to-use planning
language is described, PDDL-K (Planning Domain Description Language
with control Knowledge), which allows one to specify a planning problem
together with heuristic information that can be of help for both pruning
the search space and finding better quality plans. The semantics of the
language is given in terms of a translation into a set of LTL formulae.
Planning is then reduced to “executing” the LTL encoding, i.e. to model
search in LTL. The feasibility of the approach has been successfully tested
by means of the system Pdk, an implementation of the proposed method.

1 Introduction

Automated planning is a field of Artificial Intelligence that studies methods
and algorithms to find action sequences (plans) achieving some given goals. If
the concurrent execution of different actions is allowed, then a (parallel) plan
is a sequence of sets of actions. In general, a planning problem is specified
by describing all the executable actions, some goal, and what is known about
the initial state of the world. A planner is a piece of software that takes as
input the description of a planning problem and outputs a sequence of actions
that, if executed, transforms the initial state into a state satisfying the goals.
In order to make the planning task more precise, various planning models can
be considered. Each of them formalizes different assumptions on the class of
problems that may be dealt with, in particular on the nature of actions (see
for instance [21]). In classical planning, to which most work has been devoted
so far, actions are assumed to be deterministic and the world is finite, discrete,
fully observable, and with no exogenous events.

“Intuitively, planning is logical reasoning of some kind” [9], and in fact,
beyond planners based on specialised algorithms, different logical approaches
to planning have been proposed. In such approaches, a planning problem is

1

encoded by a logical theory and plans are synthesised by means of some general
logical procedure. Representative of the great variety of approaches and logics
used to this aim are [2], [8], [9], [11], [18], [25], [29], [30], [31], [32], [35], [37],
[38], [39], [41].

Traditionally, planning has been formalised as deduction: plans are gener-
ated by constructive proofs of so-called plan specification formulae, stating that
there exists a plan leading from the initial state to a state satisfying the goal.
The best-known logical formalisation of planning in the deductive view is the
Situation Calculus [33]. [37] (Chapter 10) presents some Situation Calculus
planning systems, written in GOLOG, a high-level logic programming language
for agents, based on the Situation Calculus and implemented in Prolog. The
GOLOG planners show one of the main strong points of the logical approaches
to planning: thanks to the expressive power of logical languages, it is possible
to enrich the description of planning problems with problem dependent infor-
mation, that can be of great help both in reducing the search space and finding
better quality plans.

Dually to the “planning as derivability” approach, the “planning as sat-
isfiability” paradigm was introduced by [25], and carried on in [26] and [28].
According to this paradigm, a planning problem is encoded by a logical theory,
modelling the rules governing the world evolution, in such a way that any model
of the theory corresponds to a valid plan. Based on the above cited works is the
planner SATPLAN,1 the winner for optimal deterministic planning in the last
two international planning competitions (IPC 2004 and IPC 2006).

In SATPLAN, the target logic of the encoding is classical propositional logic.
This planner can thus be considered as an application to planning of the ap-
proach based on “executing propositional formulae” – where executing a formula
means building a model of it [19]. In order to represent time in classical propo-
sitional logic, the language of SATPLAN uses indexed propositional letters, the
index playing the role of a time stamp. This forces the planner to fix a time
limit (layer) in advance, in which goals have to be achieved. In order to be
complete, plan search proceeds by iteratively deepening such a limit. When
solution plans are fairly long, this method can be quite hard.

Moreover, SATPLAN does not decide, in general, the problem of existence
of a solution. In fact, when a problem has no solution, the system may not
terminate, unless a maximal layer or a timeout is fixed in advance. Note that
the same can be said of planners based on predicate logic, such as the GOLOG
planners and those based on the so called “Answer Set Planning” approach
[42, 31].

The work presented in this paper conforms to the “planning as satisfiability”
paradigm but, differently from [25], the logic used to encode planning problems
is propositional Linear Temporal Logic (LTL). This approach carries on the idea
of executing temporal logics [7] and its application to planning (already sketchily
proposed in [8]).

The choice of LTL is due to two main reasons. First of all, it allows a simple
and natural representation of a world that changes over time. Secondly, it is
decidable. These two features together free planning in LTL from the above
mentioned inconveniences of planning in (either propositional or first-order)
classical logic.

1SATPLAN is available at http://www.cs.washington.edu/homes/kautz/ satplan/.

2

Moreover, domain dependent knowledge can be expressed in LTL (see [4],
[15]), as well as domain restrictions in the style of [13] and intermediate tasks,
like in [3].

A prototype system that encodes the whole planning problem into LTL and
reduces planning to model search was presented in [14]. The first experiments
with that system showed however that stating domain dependent and control
knowledge correctly as LTL formulae can be quite a delicate task, since the
domain expert cannot be assumed to be a logician. Moreover, with the addition
of restrictions on the searched plans, completeness may be lost and it may
happen that the planner finds no solution even if one exists.

Such problems are quite general and affect any planner that allows for the
specification of extra problem-dependent knowledge. They can be addressed
by providing tools supporting the domain expert in the specification task, in
particular

(i) debugging tools, and

(ii) a simple, compact and easy-to-use planning language (similar to the spe-
cial purpose formalisms widely adopted in the planning community), which
allows the user to include different forms of domain specific knowledge.

A proposal to achieve the second aim above is represented by the plan-
ning language PDDL-K (Planning Domain Description Language with control
Knowledge), which is described in this paper. PDDL-K guides the user in the
specification of heuristic knowledge, providing a set of control schemata. The
language is given an executable semantics by means of its translation into LTL.

The system Pdk (Planning with Domain Knowledge)2 implements the se-
mantics of PDDL-K: it accepts PDDL-K as input language, translates the prob-
lem description into its LTL representation and reduces planning to model
search. Moreover, in order to achieve the first of the two above mentioned
aims, Pdk provides tools that can help the user in the debugging phase. Such
tools exploit the fact that the planning problem is entirely encoded as a logical
theory. In fact, different parts of the encoding are subjected to logical tests,
allowing one to identify where possible bugs come from.

The paper is organised as follows. Section 2 briefly recalls the syntax and se-
mantics of LTL and shows how plans can be characterised in terms of temporal
models. Section 3 formally defines classical planning problems, by directly using
the language PDDL-K, and shows how the specification of a planning problem
is encoded into LTL. Some examples of problems that are not easily expressible
in classical planning formalisms are also given. Since the correct formulation of
domain knowledge is a delicate issue, Section 4 points out some guidelines that
can help in this task and describes how different forms of heuristic information
can be specified in PDDL-K, along with their LTL semantics. The tools offered
by the system Padok to perform an off-line check of the specification are de-
scribed in Section 5. In Section 6 the language PDDL-K is compared with the
languages of other planners allowing for the specification of control knowledge

2Pdk is a new, more efficient implementation of the prototype presented in
[14], offering also new features and tools. It is implemented in Objective Caml
(available at http://caml.inria.fr/) and C. The planner can be downloaded from
http://pdk.dia.uniroma3.it/, together with a set of sample domains and a user manual.

3

and some experimental results are presented, comparing the performances of
Pdk with other planning systems. Section 7 concludes this work.

2 Linear Temporal Logic, temporal interpreta-
tions and plans

The language of linear temporal logic considered in this paper extends classi-
cal propositional logic by means of the unary modal operators 2 (always), 3

(eventually) and © (next).
A temporal structure is a countably infinite sequence of elements called states

or time points. A temporal interpretation M consists of a temporal structure
〈s0, s1, s2, . . .〉 and a mapping vM : N→ 2P , where P is the set of propositional
letters of the language. For any k ∈ N, vM(k) ⊆ P is the set of propositional
letters holding at state sk. The satisfiability relation Mk |= A, for k ∈ N, is
inductively defined as follows:

1. Mk |= p iff p ∈ vM(k), for any propositional letter p ∈ P .

2. Mk |= ¬A iff Mk 6|= A.

3. Mk |= A ∧B iff Mk |= A and Mk |= B.

4. Mk |= A ∨B iff either Mk |= A or Mk |= B.

5. Mk |= A→ B iff either Mk 6|= A or Mk |= B.

6. Mk |= 2A iff for all j ≥ k, Mj |= A.

7. Mk |= 3A iff there exists j ≥ k such that Mj |= A.

8. Mk |= ©A iff Mk+1 |= A.

Truth is satisfiability in the initial state: a formula A is true in M (and M
is a model of A) iff M0 |= A. Truth of sets of formulae is defined as usual.

In order to define the correspondence between temporal interpretations and
plans, we recall that a classical planning problem is described distinguishing
fluents (propositions about the world) and actions. Accordingly, we assume
that a planning problem is described in a temporal language containing two
disjoint sets of atomic propositions: Actions, whose elements denote actions,
and Fluents, denoting facts about the world. If a ∈ Actions, the intended
meaning of a holding at state sk of a temporal model is that the action denoted
by a is performed at state sk.

Under the assumptions of classical planning, the interpretations of the lan-
guage are candidates for representing solution plans. Since a plan is a finite
sequence of (sets of) actions, we are actually interested only in finite initial
fragments of temporal interpretations (up to the achievement of the goal), in
particular interpretationsM falsifying all a ∈ Actions from some state onwards.
We shall abuse language and call such interpretations finite. If M is a finite
temporal interpretation, then it determines the (parallel) plan P = 〈A0, ..., An〉
such that for every i = 0, ..., n and action a ∈ Actions, Mi |= a iff a ∈ Ai, and
for all k > n and all a ∈ Actions, Mk 6|= a (i.e. no action is performed after

4

state n). If the plan P = 〈A0, ..., An〉 determined by the finite interpretation
M is a solution plan of the problem with final goal G, then Mn+1 |= G.

In Section 3 we show how to build a temporal theory TΠ, for each classical
planning problem Π, that is a “correct and complete” encoding of the problem
Π, i.e. such that every finite model of TΠ determines a plan solving Π, and
every solution plan for Π is determined by some model of TΠ.

The basics of the LTL encoding of a planning problem can be sketchily
illustrated here by the following small example: in the initial state a robot is
in room A, its goal is to be in room B and the only actions it can perform is
going from a location to another, specifically either from A to B, or from B to
A. The problem can be described in the syntax of PDDL, the present standard
Planning Domain Description Language [20], as follows:

(:predicates (at ?x)) (:objects A B)

(:init (at A)) (:goal (at B))

(:action go :parameters (?from ?to)

:precondition (at ?from)

:effect (and (at ?to) (not (at ?from))))

The declarations in the first line above describe the signature of the language
(the unary predicate at and the two constants A and B); the second line declares
the initial state and goal, the last lines describe the parameters, precondition
and effect of the operator go. An “operator” is a (parametrized) action schema
representing the whole set of its ground instances. From now on, only ground
instances of operators will be called “actions”.

The signature of the target language contains a propositional letter for each
ground instance of the fluent and operator, i.e. at A, at B, go A B, go B A
(going from x to x is excluded, since such actions have contradictory effects).
The problem itself is represented by the following set of formulae:

S = { at A ∧ ¬at B,3at B,
2(go A B → at A), 2(go B A→ at B),
2(©at A ≡ (at A ∧ ¬go A B) ∨ go B A),
2(©at B ≡ (at B ∧ ¬go B A) ∨ go A B)}

The first formula represents the initial state; the second the goal of the problem
(“sometimes in the future the goal will be achieved”). The two formulae in
the second line above represent the preconditions for the executability of the
two actions (the robot can move from a place only if it is there). The last two
formulae are an LTL reformulation of Reiter’s “successor state axioms” [37]: at
any non-initial state, the robot is at place x if and only if either it was already
there and did not go away, or it has just arrived at x. One of the models of
S is the sequence of states s0, s1, ... such that the only true atoms at s0 are
at A and go A B, and the only true atom at si, for i > 0, is at B. The plan
corresponding to such a model is the sequence 〈{go A B}〉, consisting of a single
action set.

Once a planning problem is encoded by a set of temporal formulae, planning
is reduced to model construction. To this aim, the planner Pdk uses the system
PTL, an efficient implementation of proof search in LTL by means of tableaux
techniques [43], developed in C by G. Janssen at Eindhoven University [23]. PTL
is called in “satisfiability mode” on the encoding S of the planning problem and,
if this is satisfiable, it outputs a representation of a complete and open tableau
for S. Pdk extracts a plan from the first open branch of the tableau: node labels

5

(sets of literals) are cleaned up by keeping only (positive) atoms representing
actions.

3 Planning problems and their LTL encoding

A planning problem is usually described specifying what holds in the initial
state, what the goals are and which actions can be performed to change the
world. In classical planning, it is assumed that the initial state can be repre-
sented by a (classical) formula I that completely describes the world, i.e. it is
assumed that for any fluent R, it is known whether R is initially true or false.
There is a single final goal, that can be described by a (classical) formula G built
up from fluents. Each action is described specifying its preconditions and effects
on fluents; when describing the effects of an action, only the action changes are
specified, assuming that all the rest stays unchanged.

In classical planning formalisms, like STRIPS [17] and PDDL [20], important
restrictions are usually imposed on the syntactic form of each of the above
components. For instance, actions cannot be mentioned in action preconditions
or effects.

In what follows we describe the kernel of the language PDDL-K, that can be
viewed as an extension of the ADL-subset [34] of classical PDDL [20], and give
its semantics in terms of a translation into a set of LTL formulae (the features
of PDDL-K devoted to the representation of heuristic knowledge are presented
in Section 4).

A planning problem can be represented by a set of LTL formulae according
to different encodings, as shown in [12]. The semantics of PDDL-K consists
of a simple form of progression encoding, that recalls the encoding of planning
problems in the Situation Calculus [36] and the linear encoding of [24]. Such an
encoding schema is provably correct and complete.

The description that follows of the language PDDL-K and its semantics will
be illustrated by use of an example, the teatime domain, one of the classical
problems in artificial intelligence planning. It consists of the class of problems
where a robot has to deliver tea to the inhabitants of a given number of rooms,
where one of the rooms contains a cup-stack and another a tea-machine. Each
room is connected to the hallway and possibly to other rooms.3 Though easy
to understand and describe, problems in the teatime domain have fairly long
solution plans, and are not so easy to solve automatically.

3.1 Signature

Like in PDDL, the PDDL-K description of a planning problem follows a multi-
sorted first-order syntax, where however each domain is finite and fixed. The
specification of the problem contains the definition of the signature: type, con-
stant and predicate declarations. In particular, wrt type declarations, subtyping
is allowed. For each type, a finite set of constants is specified, naming the objects
of the domain.

3This domain is a simplification of the teatime domain in the repository of
the European Planning Network of Excellence (PLANET), that can be found at
http://scom.hud.ac.uk/planet/repository/. The original domain is a multi-robot scenario:
two robots cooperate to serve tea; each robot is only allowed in some rooms and they meet in
the hallway to exchange cups.

6

For instance, in our description of the teatime domain, types consist of
locations and rooms, where location is a supertype of room:

(:types room - location /* room is a subtype of

location */

location)

In the problem with four rooms, constants may be declared as follows:

(:objects hallway - location

room1 room2 room3 room4 - room)

From such declarations, it follows that room1, room2, room3, room4 are

also locations.

In PDDL-K predicates are distinguished into fluents, denoting properties of
the world that may change over time, and static predicates, whose interpretation
is fixed. The declaration of the predicate symbols of the language associates a
type to each of them.

In the teatime domain, fluents (:predicates) and static predicates
(:static) can be defined as follows:

(:predicates (at ?x - location)

(hascup)

(fullcup)

(ordered ?x - room))

(:static (connected ?x ?y - location)

(cupstack ?x - room)

(teamachine ?x - room))

(identifiers beginning with a question mark are variables).

A fluent at(x) is true when the robot is at location x; hascup is true if the

robot is holding a cup; fullcup is true when the robot is holding a cup full

of tea; ordered(x) holds when the inhabitant of room x has ordered tea

and it has not been served yet; teamachine(x) means that x is the room

where the teamachine is, cupstack(x) that the cupstack is in room x, and

connected(x, y) that the two locations x and y are directly connected by

a door.4

Each ground atom in the language of the PDDL-K-specification is mapped
to a propositional letter. We will continue using a first order syntax also for LTL
formulae, in order to enhance readability. Typed quantification will be used as
an abbreviation for propositional formulae. For instance, ∀x : t A(x) stands for
A(c1) ∧ ... ∧A(cn), where c1, ..., cn are all the constants of type t.

PDDL-K also accepts simple arithmetical formulae, built up from integers,
(quantified) variables, arithmetical functions and predicates. Their semantics
is operational: the truth value of an arithmetical atomic formula is computed
just by evaluating it, like in TLPLAN [4]. Equality can also be applied to non-
numeric arguments and is treated according to the assumption that the objects
in each domain are pairwise distinct: if t and u are non-arithmetical terms (i.e.
they are constants), then t = u holds iff t and u are identical.

4Here and in the following, we shall use the LISP-like syntax of PDDL when showing pieces
of PDDL-K code, and go on using the ordinary logical notation for formulae in the text.

7

3.2 Background theory

A specific section contains the background theory, i.e. knowledge about static
predicates. It contains formulae without temporal operators, that are meant to
be true throughout time, i.e. they represent facts that do not vary over time
(state invariants). The background theory is completed with respect to static
predicates, according to the closed world assumption: what is not classically
derivable from the background theory is false. Therefore, each ground static
atom is either true or false at each time point. All literals built up from fluents
which are derivable from the background theory are also added to its completion.
After completion, the background theory consists of a set of literals. This set
is used to simplify the encoding of the planning problem: each static atom
is replaced by either true or false, and the same happens with fluent literals
occurring in the completed theory. As will be better explained later on, the
theory is also used to filter out operator instances, by elimination of those
actions whose preconditions or effects are inconsistent.

It is worth pointing out that, since the completed theory is a set of literals,
in order to carry out simplification there is no need to test derivability, but only
set membership.

In our example, the background theory contains knowledge about the
topology of the rooms and the location of the cupstack and the teama-
chine:

(:theory (forall (?x - room) (connected ?x hallway))

(teamachine room1) (cupstack room2)

(connected room1 room3)

(connected room2 room4))

3.3 Initial state and goal

The other basic declarations in the description of the problem are the specifica-
tion of the initial state, goal and operators. Knowledge about the initial state
is specified by means of a set of formulae.

For instance, if in the initial state the robot is in the first room and all
the rooms have ordered tea, we can declare:

(:init (at room1)

(forall (?x - room) (ordered ?x)))

Negative information need not be stated explicitly. Since knowledge about the
initial state is assumed to be complete (like in classical planning), the initial
state is completed wrt fluents. The LTL encoding of the initial state consists
then of the set S0 of literals built up from fluents as follows. Let Init be the
set of formulae declared in the :init section of the specification, and K the
completed background theory. For any fluent R, if Init ∪K |= R then R ∈ S0,
otherwise ¬R ∈ S0.

In our example, the encoding of the initial state is

S0 = { at(room1), ∀x : room ordered(x),
¬at(hallway),¬at(room2),¬at(room3),¬at(room4),
¬hascup,¬fullcup }

8

Attention must be payed to disjunctive information in the :init section.
For instance, if the signature contains only the unary predicate p and constants
a and b, the background theory is empty and the declaration of the initial
state is (:init (or (p a)(p b))), then the encoding of the knowledge about
the initial state is {¬p(a),¬p(b)}, since neither p(a) nor p(b) is derivable from
p(a) ∨ p(b).

The description of the initial state may also contain temporal operators.
Non-classical formulae in the :init declaration, that will just be added to the
encoding, may be used to specify intermediate goals that have to be achieved
or actions that have to be performed. For instance, in a domain containing a go
operator (go(x, y): the agent moves from x to y), the description of the initial
state may contain

3(∃x : location go(x, bank) ∧3∃x : location go(x, post office))

During plan execution, the agent must sooner or later go to the bank and
afterwards to the post office.

The specification of the final goal is given by any first-order formula G, and
its encoding is the formula 3G (the goal will eventually be true).

For instance:

(:goal (forall (?x - room) (not (ordered ?x))))

is translated into:
3∀x : room ¬ordered(x)

Before dealing with the representation of actions, we observe that the the-
oretical computational complexity of the encoding of a PDDL-K problem into
LTL is at least exponential in the length of the propositional translation of the
problem specification. This is because of the derivability tests needed to com-
plete the background theory and the description of the initial state. Therefore,
the presence of a complex background theory can have a heavy influence on the
encoding time. However, in practice the encoding time is often a small percent-
age of the total execution time: the average encoding time in solving about 100
problems in 7 different domains is less than 8% of the total execution time.

3.4 Operators

The kernel description of each operator specifies its name, parameters (with
associated type), preconditions and effects.

The actions allowed in the teatime domain can be described as follows:

(:action getcup

:parameters (?x - room)

:precondition (at ?x) (cupstack ?x) (not (hascup))

:effect (hascup))

(:action fillcup

:parameters (?x - room)

:precondition (at ?x) (teamachine ?x)

(hascup) (not (fullcup))

:effect (fullcup))

9

(:action deliver

:parameters (?x - room)

:precondition (at ?x) (ordered ?x) (fullcup)

:effect (not (ordered ?x)) (not (fullcup))

(not (hascup)))

(:action go

:parameters (?from ?to - location)

:precondition (or (connected ?from ?to)

(connected ?to ?from))

(at ?from)

:effect (at ?to) (not (at ?from)))

Preconditions can have any form. For instance, the first formula in the
precondition of the go operator above is a disjunction. Such a precondition
dispenses us to explicitly declare, in the background theory, that connected is
a symmetric relation. Conditional and universally quantified effects are also
allowed. For instance, a go operator with a single parameter can be declared as
follows:

(:action go :parameters (?to - location)

:precondition (forsome (?from - location)

(and (at ?from)

(or (connected ?from ?to)

(connected ?to ?from))))

:effect (at ?to)

(forall (?from - location)

(when (at ?from) (not (at ?from)))))

Here, forsome is the existential quantifier and when is used for conditional
effects:

(forall (?x - location) (when (at ?x) (not (at ?x))))

means that for every location x, if the robot is at x when performing a go action,
it will no longer be at x in the next state.

As already said in Section 2, each ground operator instance, called “action”,
is mapped to a propositional letter, just like atoms representing facts about
the world. However, every action with contradictory preconditions or effects is
eliminated from the encoding (and replaced everywhere by false). For example,
any instance of go(x, y) where x = y is contradictory: its post-condition, in
fact, can never be satisfied; such actions are automatically ruled out. Actions
are eliminated also when they are inconsistent with the background knowledge
about the domain. For example, if room 2 is not connected to room 3 (and
it will never be), then the actions go(room2, room3) and go(room3, room2)
could never be executed. Action filtering by use of the background theory often
dramatically reduces the search space.

In the teatime problem with four rooms, more than 50% of the total num-

ber of operator instances are contradictory, and the percentage increases

with the dimension of the problem: in the 20 rooms problem, it becomes

more than 80%.

10

Knowledge about actions and their effects on the world is encoded by means
of several groups of formulae.

Action preconditions. For every action a, the encoding contains a formula
of the form 2(a → πa), where πa represents the preconditions for the
executability of a: “at any time, a is performed only if its preconditions
πa hold”.

Some of the action precondition axioms in the teatime domain are:

2(getcup(room2)→ at(room2) ∧ ¬hascup),
2(fillcup(room1)→ at(room1) ∧ ¬fullcup ∧ hascup),
∀x : location 2(deliver(x)→ at(x) ∧ ordered(x) ∧ fullcup),
2(go(room1, hallway)→ at(room1)),
2(go(room1, room3)→ at(room1))

Note that, thanks to the background knowledge and the consequent

simplifications, static predicates never appear in the encoding: since

cupstack(x) is true if and only if x = room2, cupstack(room2) is

replaced by true and it does not appear among the preconditions of

getcup(room2). All the other instances of getcup(x) with x 6= room2

are eliminated because cupstack(x) is in this case replaced by false.

Incompatibility among actions. A set of formulae describes incompatibility
relations between actions. Obviously, if two actions a and b are incom-
patible because they have conflicting preconditions or effects, this need
not be represented explicitly. In fact, no model of a complete encoding
can have a and b true at the same time point. But if a deletes a precon-
dition of b (or vice-versa), then their incompatibility has to be explicitly
represented. For every action a, the encoding contains a formula of the
form 2(a → ¬a1 ∧ ... ∧ ¬an), where a1, ..., an are all the actions whose
incompatibility with a must be made explicit.

For example:

2(go(room2, room4)→ ¬go(room2, hallway) ∧ ¬deliver(room2)
∧ ¬fillcup(room2))

2(go(hallway, room1)→
¬go(hallway, room2) ∧ ¬go(hallway, room3)
∧ ¬go(hallway, room4) ∧ ¬deliver(hallway))

Action effects. For every ground instance R of a fluent, two formulae are
computed from the operators descriptions: G+

R specifies all the conditions
that can lead to change the truth value of R from false to true, and G−R
specifies all the conditions that can lead to change the truth value of R
from true to false. The encoding includes the following formula, for any
fluent R:

2(©R ≡ G+
R ∨ (R ∧ ¬G−R))

“At any non-initial time point (say sn+1), R holds iff at the previous state
(sn) either some action having R as effect is performed or else R holds
and nothing is done that causes ¬R”. This is a paraphrase of Reiter’s
successor state axiom [36] into LTL.

11

For instance:

∀x : location 2(©at(x) ≡ ∃y : location go(y, x)
∨ (at(x) ∧ ¬∃y : location go(x, y)))

2(©fullcup ≡ fillcup(room2)
∨ (fullcup ∧ ¬∃x : location deliver(x)))

3.5 Actions as formulae

The fact that actions are explicitly represented by formulae is one of the main
features of the language. In order to appreciate the flexibility deriving from this
fact, let us consider the following example, borrowed from [1], that is not easily
and naturally representable in most planning languages. In order to open the
door to the Computer Science Building at Rochester, both hands must be used:
a spring lock must be held open with one hand, while the door is pulled open
with the other hand. Unless the lock is held open, it snaps shut. This is an
example where the effect of two actions performed together is different from the
sum of their effects. Let us consider the (propositional) language with the single
fluent open (the door is open) and the two operators pull door and hold lock
(with no parameters). The following is a correct PDDL-K specification of a
problem that can only be solved by executing the two actions together:

(:predicates open)

(:goal open)

(:action pull_door

:effect (when hold_lock open))

(:action hold_lock

:effect (when pull_door open)))

This is an example with conditional effects, where conditions are actions. In
general, any formula can be used to express conditions, with no syntactical
restrictions.

4 Control Knowledge

The kernel specification of a planning problem, i.e. what necessarily has to be
known in order to solve the problem, can be enriched with knowledge about
how to solve the problem, in order to find a solution faster, as well as to obtain
a better quality solution. For instance, the domain expert can know that some
actions are useless under certain circumstances or that they should be preferred
in other cases. Information of this kind can be added to the LTL encoding
of a planning problem in the form of a set K = {2A1, ...,2Ak} of temporal
formulae, where the Ai’s are called control formulae. The addition of a set
of control formulae to the encoding of a problem in general reduces the set of
models of the resulting theory, and, consequently, the search space.

As a matter of fact, the addition of correct and effective control knowledge
to a problem specification is essential in order for the system Pdk to behave
well, both in terms of execution time and in terms of plan quality. In fact,
since it relies on a depth-first model search mechanism, the solutions Pdk can
find without control knowledge are quite disappointing in most problems. For
instance, the solution found by the planner Pdk to the teatime problem with
four rooms, with no heuristic knowledge, begins with:

12

1) go_room1_room3

2) go_room3_room1

3) go_room1_hallway

4) go_hallway_room4

5) go_room4_room2

6) getcup_room2

...

The following table compares the execution times (in seconds, columns 2 and
3) and plan lengths (i.e. number of actions, columns 4 and 5) in the teatime
domain, when Pdk is called with control knowledge (columns 2 and 4) and
without any heuristic information (columns 3 and 5).

number Execution time Plan length
of with without with without

rooms control knowledge control knowledge

4 0.02 0.02 32 50

8 0.29 0.44 68 168

12 0.65 2.76 104 355

16 1.44 5.03 140 610

20 2.29 7.50 176 933

22 3.22 9.77 194 1120

The rest of this section is devoted to illustrate how control knowledge can
be stated in PDDL-K. Beyond control formulae, in 4.1 the main predefined con-
trol schemata provided by the language are illustrated.5 Subsections 4.2 and
4.3 present other extensions of PDDL that are often useful to provide heuristic
information. Finally, in 4.4 we observe how the use of control knowledge al-
lows one to define new classes of problems that cannot be handled by classical
planning formalisms.

4.1 Control formulae and control schemata

The language PDDL-K allows one to add control formulae explicitly, in a specific
section.

For instance, the constraint that tea must be delivered to a room as soon
as possible can be stated as follows:

(:control

(forall (?x - room)

(implies (and (ordered ?x) (at ?x) (fullcup))

(deliver ?x))))

As a consequence, the formula

2∀x : room(ordered(x) ∧ at(x) ∧ fullcup→ deliver(x))

is added to the encoding

5A complete description can be found at http://pdk.dia.uniroma3.it/

13

However, heuristic knowledge is more easily described by means of specific con-
trol schemata. The use of predefined schemata reduces the risk of introducing
occasional errors.

At present, PDDL-K accepts two kinds of control schemata: fluent-oriented
and action-oriented. Fluent-oriented control information is provided in specific
sections of the problem description. It consists essentially of knowledge about
bad and good situations: situations that should never be caused by the agent’s
actions (bad situations) and subgoals that, once achieved, must never – and
never need to – be undone (good situations) [37]. Good situations are special
cases of the “next-state” control formulae in [4]. The encoding of bad and good
situations consists of formulae of the form 2(A → ©A), where either A is a
good situation or A = ¬B, where B is a bad situation.

Knowledge about good and bad situations can in most cases be stated
more easily in an action oriented way (for instance: “do not perform action
a in case it destroys a good situation”). Action oriented control schemata are
given by means of additional fields in the definition of an operator (besides
the :parameters, :precondition and :effect fields). They can be broadly
classified into two main categories: reject and select schemata.

4.1.1 Reject schemata

Reject schemata translate into formulae preventing the addition of some oper-
ator instance to the plan, under given conditions. Such formulae are equivalent
to formulae of the form

∀x1 : t1...∀xn : tn2(F → ¬name(x1, ..., xn))

where F is a formula, name is the name of an operator and x1, ..., xn its pa-
rameters.

A simple reject schema allows one to specify conditions that should hold
when an action is executed in a state. Such conditions are specified in the
:only-if field of the operator description, in the form:

(:action name :parameters x1−t1 . . . , xk−tk
...
:only-if F1 . . . Fn

...)
where F1, . . . , Fn are formulae, whose free variables are among x1 . . . xk. The
semantics of the :only-if field is

∀x1 : t1 . . . ∀xk : tk2(name(x1, . . . , xk)→ F1 ∧ . . . ∧ Fn)

The fact that the semantics of the :only-if field is the same as that of
action preconditions is not surprising (see [5]). It is however important that
control information is kept separate from knowledge inherent to the domain.

As an example, in the teatime domain we can specify that an action of
the form go(x, y) should not be executed if the robot has nothing to do
in y, unless y is the hallway:

(:action go :parameters (?from ?to - location)

.........

14

:only-if (or (= ?to hallway)

(and (fullcup) (ordered ?to))

(and (hascup) (not (fullcup))

(teamachine ?to))

(and (not (hascup)) (cupstack ?to))))

The LTL encoding of the problem is then added the following formula,
suitably simplified according to the background theory:

∀x : location∀y : location2 (go(x, y)→
y = hallway ∨ (fullcup ∧ ordered(y))∨
(hascup ∧ ¬fullcup ∧ teamachine(y)) ∨ (¬hascup ∧ cupstack(y)))

Another form of reject schema can be specified in the :next field of an
operator description, specifying conditions that should hold immediately after
having performed the corresponding action.

(:action name :parameters x1−t1, . . . , xk−tk
...
:next F1, . . . , Fn

...)
where F1, . . . , Fn are formulae, whose free variables are among x1, . . . , xk. The
semantics of the :next field is

∀x1 : t1...∀xk : tk2(name(x1, ..., xk)→ ©(F1 ∧ ... ∧ Fn))

Typically, the :next field is used to force a sequence of actions.

For instance, in the teatime domain the random movement of the robot
can be avoided by requiring that, after entering a room, the robot actually
does something there:

(:action go :parameters (?from ?to - location)

...........

:next (or (= ?to hallway)

(deliver ?to)(fillcup ?to)(getcup ?to)))

This causes the addition of (the simplification of) the following formula
to the encoding:

∀x : location∀y : location2(go(x, y)→
©(y = hallway ∨ deliver(y) ∨ fillcup(y) ∨ getcup(y)))

Note that this is a stronger requirement with respect to the sample

:only-if constraint above (allowing the robot to enter a room where

it could do something and yet exiting it immediately), and however it is

much more compact and simple. This is possible thanks to the fact that

actions can be mentioned explicitly in operators descriptions.

4.1.2 Select schemata

Select schemata translate into formulae forcing the addition of some operator
instance to the plan, under given conditions. Such formulae are equivalent to
formulae of the form

∀xj1 : tj1 . . . ∀xjm : tjm2(F → ∃xk1
: tk1

. . . ∃xkp
: tkp

name(x1, ..., xn))

15

where F is a formula whose free variables are among xj1 , . . . , xjm , name is the
name of an operator and {x1, . . . , xn} = {xj1 , . . . , xjm , xk1

, . . . , xkp
} the set of

its parameters.

PDDL-K provides select schemata representing suggestions of the kind: per-
form a given action as soon as possible, possibly under other conditions. Such
schemata are called “asap” (As Soon As Possible) schemata. The weaker form
of asap field expresses the fact that, whenever the preconditions for the applica-
tions of the operator on some values of its parameters hold, and the :only-if

conditions also hold for the same values of the parameters, then the operator
has to be applied, for some values of the parameters:

(:action name :parameters x1−t1, ..., xk−tk
...
:asap F1, . . . , Fn

...)
where F1, ..., Fn are formulae, whose free variables are among x1, ..., xk. The
semantics of such an :asap field is the following formula:

2(∃x1 : t1...∃xk : tk (G ∧ F1 ∧ ... ∧ Fn)→
∃x1 : t1...∃xk : tk name(x1, ..., xk))

Here, G is the conjunction of the formulae in the :precondition and :only-if

fields in the definition of the operator.

As an example, the definition of the getcup operator in the teatime do-
main can be enriched with:

(:action getcup :parameters (?x - room)

:precondition (at ?x) (cupstack ?x) (not (hascup))

...

:asap (exists (?y - location) (ordered ?y)))

The LTL encoding of the problems is then added the simplification of:

2(∃x : location (at(x) ∧ cupstack(x) ∧ ¬hascup∧
∃y : location ordered(y))→

∃x : location getcup(x)))

I.e.:

2(at(room2) ∧ ¬hascup ∧ ∃y : location ordered(y)→ getcup(room2))

The :s-asap (“strong asap”) field expresses a stronger form of “asap” field:
it forces the (concurrent) application of the operator to all the values of the
parameters to which it can be applied.

One can see how simple it is now to add the information that tea has to
be delivered as soon as possible (already presented at page 13 as an LTL
formula to be included in the :control section). In fact, it amounts to
an unrestricted :s-asap field in the definition of deliver:

(:action deliver :parameters (?x - room)

....

:s-asap)

Existential and universal quantification in “as soon as possible” restrictions
can also be mixed.

16

4.2 Reference to the goal and initial state

In the specification of problem-dependent control information, the possibility
to refer to the goal to be achieved, as well as to what holds in the initial state
can often be useful. To this aim, the syntax of PDDL-K formulae is extended
by means of the unary modal operators goal (which can dominate only literals)
and initially (which can dominate only atoms): goal ` means that ` is a goal of
the problem, initially p means that p is true in the initial state. A formula of
the form goal ` or initially p is either always true or always false; consequently
it is treated like static predicates and simplified out in the final encoding. As a
consequence, some operator instances can also be eliminated.

For example, let us consider the problem where a one-arm robot has to
move objects from the locations where they initially are to given desti-
nations, stated in the goal. We may then want to specify that an object
should be taken away from a given location only if it is not already at
its destination place. Moreover, since objects have to be dropped only
at their destinations, the robot needs to take up an object only from its
initial location. This can be specified by defining the take operator as
follows:

(:action take

:parameters (?x - object ?y - location)

:precondition (atRobby ?y) (at ?x ?y)

(forall (?z - object) (not(holding ?z)))

:effect (holding ?x)

:only-if (not (goal(at ?x ?y)))

(initially (at ?x ?y)))

As a consequence, all the instances of the take operator whose arguments

do not satisfy the :only-if requirement are eliminated from the language

of the encoding. For instance, if the destination of object obj1 is room2,

the atom take(obj1, room2) is replaced by false in the encoding.

4.3 Definitions

In some cases relevant domain dependent information can be expressed in a
general form only by recourse to new defined predicates. The language PDDL-K
provides this possibility. In the encoding, every instance of a defined predicate is
replaced by (the value of) its definition. Recursion is also allowed in definitions.

For instance, in the description of the well known Blocks World,6 “good
towers” can be defined as follows:

(:define goodTower (?x - block)

(or (and (goal(onTable ?x)) (onTable ?x))

(forsome (?y - block) (and (goal(on ?x ?y))

(on ?x ?y)

(goodTower ?y)))))

In a problem where the goal is to build a tower where block B is on block

A which, in turn, is on the table, every occurrence of goodTower(B) is

replaced, in the encoding, by on(B,A) ∧ onTable(A).

6In the blocks domain, a one-arm robot has to re-arrange a set of blocks on a table, making
towers with them.

17

4.4 Control knowledge and new classes of problems

As a final observation, it is worth pointing out that the possibility to include
heuristic information in a problem description enlarges the classes of problems
that can be dealt with. For instance, there are problems whose solutions have to
respect some requirements on the order in which actions are executed, that could
not be stated in classical planning languages. As an example, we can consider a
refined version of the classical briefcase domain, where a robot has to take some
objects from some places to others, by use of a briefcase. In the new version
of the problem, objects are of two distinguished types: normal and perishable
ones, that should not be kept in the briefcase longer than necessary. The robot
should therefore take perishable objects last, still trying to minimise its own
movements. This means that a normal object can be put into the briefcase that
already contains some perishables only if it is in the same location where another
perishable object is to be taken. This additional restriction, that cannot be
represented in classical planning languages, can be stated in PDDL-K by saying
that take(x, y) (take object x from location y and put it into the briefcase) can
be executed :only-if either x is perishable or there are no perishable objects
in the briefcase or x is put in the briefcase at the same time as a perishable
object:

is perishable(x) ∨ ∀z : perishable ¬in briefcase(z)
∨ ∃z : perishable take(z, y)

See http://pdk.dia.uniroma3.it for the complete specification of the prob-
lem.

5 Meta-level tools for off-line check

A problem specification may suffer from different forms of incorrectness, con-
sequently making the planner incomplete. Moreover, the addition of control
knowledge sometimes risks making the search harder, instead of helping, be-
cause of the overhead caused by the processing of the control theory itself (see
[27]). It is therefore important that the encoding is kept as compact as pos-
sible, and redundancies are recognised and carefully evaluated. Representing
the whole planning problem in a logical language provides the possibility to
perform some important off-line consistency and redundancy checks with little
extra effort.

A special utility in the system Pdk allows one to check the specification and
warn the user, with respect to some metalevel properties. Such tools analyse the
set of formulae obtained from the specification of the problem, always excluding
the description of the goal. The description of the properties, that follows, will
be illustrated in some points with examples from a simple planning problem.

A one-arm robot has to move a ball and a book from room A to room B.
The problem can be specified as follows.

(:types object location)

(:objects A B - location

ball book - object)

(:predicates (at ?x - object ?y - location)

(atRobby ?x - location) (free)

18

(carry ?x - object))

(:init (atRobby A) (forall (?x - object) (at ?x A))

(free))

(:goal (forall (?x - object)(at ?x B)))

(:action pick :parameters (?x - object ?y - location)

:precondition (atRobby ?y)(at ?x ?y)(free)

:effect (not (at ?x ?y))(not (free))(carry ?x))

(:action drop :parameters (?x - object ?y - location)

:precondition (atRobby ?y)(carry ?x)

:effect (at ?x ?y) (free) (not (carry ?x)))

(:action go :parameters (?x ?y - location)

:precondition (atRobby ?x)

:effect (atRobby ?y)(not (atRobby ?x)))

Consistency of the kernel of the specification: the system tests the logi-
cal consistency of the set of LTL formulae obtained from the initial state,
the background theory and the kernel of the operators description, exclud-
ing control knowledge. This is a minimal requirement for the specification
to be sound.

Consistency of control knowledge: the system checks whether the set of
formulae obtained from the specification of control knowledge can be safely
added to the kernel of the specification.

It is reasonable to require that the robot should pick up an object
whenever possible and when it is not in its goal destination. But, if
a “strong asap” requirement is added to the specification of the pick
action:

(:action pick

:parameters (?x - object ?y - location)

........

:s-asap (not (goal (at ?x ?y))))

then no plan is found and the system detects an inconsistency in
control knowledge. In fact the encoding of the :s-asap field is:

2(atRobby A ∧ at ball A ∧ free→ pick ball A)
2(atRobby A ∧ at book A ∧ free→ pick book A)

Since in the initial state at ball A, at book A, atRobby A and free
are all true, then pick ball A and pick book A should also hold in the
initial state. But the incompatibility axioms include

2(pick ball A→ ¬pick book A)

So, the addition of control knowledge causes the encoding to be con-

tradictory, as detected by this metalevel tool.

Action executability: each operator instance (which has not been already
filtered out because of its direct inconsistency with the background theory)
is considered, in turn, in order to check whether it can ever be applied.
In order to do this, the formula 3A, where A is the considered action, is
added to the set of formulae consisting of the kernel of the specification
and control knowledge (i.e. deriving from the initial state, background
theory, operator descriptions and control formulae), and the resulting set
of formulae is tested for satisfiability.

19

Let us modify our simple problem as follows: there is a third location,
home, where the robot is initially and has to go back at the end:

(:objects A B home - location

ball book - object)

(:init (atRobby home) (free)

(forall (?x - object) (at ?x A)))

(:goal (atRobby home)

(forall (?x - object)(at ?x B)))

Moreover, the following control fields are added to the operator de-
scriptions:

(:action drop

:parameters (?x - object ?y - location)

......

:only-if (goal (at ?x ?y)))

(:action go

:parameters (?x ?y - location)

......

:next (exists (?z - object)

(or (drop ?z ?y)(pick ?z ?y))))

This problem has no solution. The reason is that no action of the

form go(x, home) can ever be executed. In fact, no object can be

dropped at home, and nothing can therefore be picked up there (there

is nothing at home initially, and there will never be).

Another frequent reason for plan search failure is that some important
action has been removed from the very beginning, because its precondition
or effects are inconsistent. The system allows one also to obtain a list of all
the eliminated actions, that can therefore be examined to check whether
they are actually unnecessary.

Let us consider the same problem as above, where also the pick action
is added a control field:

(:action pick

:parameters (?x - object ?y - location)

......

:only-if (initially (at ?x ?y)))

Again, this problem has no solution because the robot cannot go

back home. Differently from before, however, all actions of the form

go(x, home) are contradictory and therefore are eliminated, because

all actions of the form pick(y, home) and drop(y, home) are also re-

moved. This fact can be recognised by examining the list of elimi-

nated actions.

Redundancy check: each control formula is tested for provability from the
rest of the specification. In case of a positive answer, such a formula
is pointed out as redundant. Note that redundancies are not always to
be avoided. In fact, there are cases where plan search becomes faster,
notwithstanding the overhead due to a larger encoding. It is however
important that they are pointed out, so that the user can carefully evaluate
each case.

20

Let us consider our simple example with the only two locations A and
B, described at page 18, with the addition of the following control
fields in the operators description:

(:action pick

:parameters (?b - object ?r - location)

........

:only-if (not (goal (at ?b ?r)))

:asap)

(:action drop

:parameters (?b - object ?r - location)

........

:only-if (goal (at ?b ?r))

:s-asap)

(:action move

:parameters (?from ?to - location)

........

:next (exists (?x - object)

(or (pick ?x ?to)(drop ?x ?to)))))

Then the system’s metalevel tool will point out that the encoding
of the :s-asap field of the operator drop is redundant (for all its
instances).

6 Experiments and Comparisons

In this section we are going to compare Pdk and its language with other ex-
isting planners. The comparison is made with respect to three main features:
expressive power, execution time and plan quality.

6.1 Expressive power

When describing a planning domain, the identification and statement of correct
and effective control knowledge is often a subtle and difficult task. Therefore,
when comparing planners allowing one to specify problem dependent informa-
tion, it is important to evaluate the ease of use of the underlying planning
languages. In this section, we briefly compare PDDL-K with the languages
accepted by other planning systems.

The planners written in GOLOG [37]7 do not accept a true planning lan-
guage, but the specification of each problem is rather a piece of Prolog code,
that defines action preconditions and successor state axioms, in the Situation
Calculus style. Control knowledge can be stated in terms of “bad situations”
(which are used to control the planners in a way similar to our reject schemata):
“it is in bad situations where all the planner’s intelligence resides” [37]. The
equivalent of our select schemata (called “opportunistic rules” by Reiter) are to
be stated in negative terms. For instance, in the teatime domain, in order to say
that tea should be served as soon as possible, a bad situation has to be defined:
the situation generated by any action destroying the existing preconditions for
delivering tea (in this domain, going away). As a further example, let us con-
sider the blocks world and the following “opportunistic rule”: if an action can

7The implementation of GOLOG in ECLIPSE Prolog and the planners are available at
http://www.cs.toronto.edu/cogrobo/kia/.

21

create a good tower, don’t do a bad-tower-creating moveToTable action. Such a
rule is encoded as follows [37]:

badSituation(do(moveToTable(X),S)) :-

not goodTower(X,do(moveToTable(X),S)),

existsActionThatCreatesGoodTower(S).

existsActionThatCreatesGoodTower(S) :-

(A = move(Y,X) ; A = moveToTable(Y)),

poss(A,S), goodTower(Y,do(A,S)).

It is apparent that, at present, writing (and debugging) a planning domain in
GOLOG requires good Prolog programming skills.

The same remark applies to the planner based on Answer Set Planning,8 de-
scribed by [40]. Planning domains and control knowledge are in fact described
in AnsProlog∗ [6], a logic programming language with answer set semantics. Al-
though also in this case writing a planning domain requires specific programming
skills, new forms of control knowledge can be specified, including knowledge in-
spired by the partial-ordering constructs used in Hierarchical Task Networks
[16, 44].

Among the logic-based planners, SATPLAN, that has already been described
in Section 1, is the approach that shares more features with Pdk. [27] examine
different forms of control knowledge that can be encoded in the “planning as
satisfiability” approach, and [22] report experiments with an extension of PDDL
that allows additional control constraints. They observe that the empirical
results show that the addition of control knowledge speeds the system up to
an order of magnitude. The style and the encoding of the language are similar
to PDDL-K, but, to our knowledge, there is no available implementation of
SATPLAN accepting this extension of PDDL.

Also planners based on specialized algorithms can benefit from the use of a
logical language to express control knowledge. TLPLAN [4] and TALplanner
[15] are based on specialized forward-chaining search algorithms, exploring a
tree-like structure of states, where each path is expanded only if control speci-
fications, encoded as Linear Temporal Logic formulae, are satisfied in the path.
In particular, TLPLAN is known as the best planner exploiting control knowl-
edge. Its behaviour has been very effective in past planning competitions and,
in terms of execution time, it largely outperforms the perfomances of Pdk. Nev-
ertheless, giving an effective description of a planning domain in the language
of TLPLAN (that also extends PDDL) requires a deep analisys of the domain
and a considerable effort. In fact, in order to obtain a good behaviour of the
planner, new features have to be extracted from the original domain and the
description has to be consequently enriched with definitions of predicates and
functions, often in the style of a true programming language. Furthermore, the
specification of correct and effective control knowledge is often quite cumber-
some, because all statements must be made in terms of fluents. For instance,
the fact that, after going to a place y, the agent has to do something at y has
to be paraphrased into: “if the agent is at a place x at time t and it is at y 6= x
at time t+ 1, then at time t+ 2 it stays at y”.

8Answer Set Planning is a planning approach that translates a planning problem into a
problem of model finding in logic programming with answer set semantics. It was originally
proposed by [42] and [31].

22

6.2 Time efficiency and plan quality

In this section we compare and discuss the performances of Pdk, in terms of
time efficiency and plan quality, w.r.t. other existing planners. The experiments
were run on a PC with P4, 3.00GHz and 1GB RAM, running under Linux.
Beyond the planners written in GOLOG and SATPLAN, we have considered two
planners that recently showed best performances in the International Planning
Competitions, YAHSP and LPG. LPG9 is a planner based on a stochastic local
search. YAHSP10 is based on a complete best-first search algorithm using a
look-ahead strategy.

The experiments we are going to report were carried out on the domains
that have already been briefly described in this paper, i.e. the teatime domain
with one robot, the blocks world and the briefcase domain.11

Of course, SATPLAN, YAHSP and LPG ran with no heuristic knowledge,
since they do not support control information. The GOLOG planners and Pdk
ran with substantially equivalent control knowledge. Specifically:

The blocks world: do not destroy “good towers”; do not create a “bad tower”
by moving a block onto another one; create “good towers” as soon as
possible.

The briefcase domain: drop an object only at its destination and only when
all the other objects having the same destination are either at place or in
the briefcase (so that every location is visited at most once); don’t take
an object from its destination; take and drop objects (when allowed to) as
soon as possible; don’t go to a place then exit it immediately (i.e. don’t
go wandering).

The teatime domain: don’t enter a room then exit it immediatly (the only
place where the robot needs to pass without doing anything is the hallway,
that is not a “room”); get a cup as soon as possible, when there are still
rooms to be served.

The results on the execution times (in seconds) are reported in the follow-
ing tables. The execution times of Pdk obviously include the encoding times.
Similarly, SATPLAN, YAHSP and LPG ran on problem specifications writ-
ten in PDDL. For the GOLOG planners, on the contrary, problems had to be
encoded by hand; the GOLOG planners have always been called with a suffi-
ciently large depth limit. In all experiments, the computation time has been
limited to 300 secs (a dash in the tables means a timeout). The tables have two
columns related to the GOLOG planners: the first (Dfs) contains data on the
depth-limited planner, the second (Bfs) on the breadth-first planner. LPG and
YAHSP, that can be called with different options, have been executed in the
modality that finds better quality solutions. Since LPG is a non deterministic

9LPG is available at http://zeus.ing.unibs.it/lpg/
10YAHSP (“Yet Another Heuristic Search Planner”) is available at

http://www.cril.univ-artois.fr/∼vidal/yahsp.en.html
11The domains used in the experiments represent classical problems which have been

given different formalizations in the literature or in existing planners’ repositories. Some
versions of all the three domains can be found for instance in the repository of
the European Planning Network of Excellence (PLANET) at http://scom.hud.ac.uk/

planet/repository/, as well as in the planning repository of the University of Freiburg at
http://www.informatik.uni-freiburg.de/∼koehler/ipp/

23

planner, each measure in its column represents the average of 50 executions on
the same problem instance.

The blocks world: execution times

Pdk GOLOG SATPLAN YAHSP LPG
problem Dfs Bfs

Prob4-1 0.01 0.07 0.08 0.05 0.00 0.25

Prob6-1 0.03 0.07 0.08 0.34 0.00 0.26

Prob8-1 0.26 0.07 0.23 23.71 0.03 0.87

Prob10-1 0.77 0.08 11.66 − 0.24 2.75

Prob12-1 3.04 0.11 23.39 − 0.25 8.34

Prob14-1 3.14 0.13 − − 1.37 14.41

Prob16-1 6.88 0.22 − − 2.16 37.65

Prob18-1 41.47 0.39 − − 16.78 98.67

The briefcase domain: execution times

Pdk GOLOG SATPLAN YAHSP LPG
problem Dfs Bfs

3× 3 0.01 0.07 0.11 0.21 0.00 0.21

4× 4 0.07 0.07 0.41 7.29 0.00 0.21

6× 3 0.03 0.08 29.85 0.15 0.00 0.20

6× 6 0.36 0.07 273.72 − 0.00 0.26

8× 4 0.22 0.08 − 3.95 0.00 0.28

10× 10 2.11 0.09 − − 0.03 0.38

12× 10 2.32 0.10 − − 0.04 0.47

14× 10 3.81 0.10 − − 0.06 0.62

16× 10 3.41 0.11 − − 0.08 0.76

The teatime domain: execution times

Pdk GOLOG SATPLAN YAHSP LPG
problem Dfs Bfs

2 0.00 0.07 0.09 0.13 0.00 0.21

3 0.01 0.08 0.25 13.88 0.00 0.22

4 0.02 0.08 2.15 − 0.00 0.24

6 0.14 0.09 265.15 − 0.04 0.31

8 0.29 0.11 − − 0.37 0.39

12 0.65 0.23 − − 18.18 0.70

16 1.44 0.54 − − − 1.29

20 2.29 1.19 − − − 2.22

22 3.22 1.79 − − − 2.84

In the tables, problem names in the blocks world have the form Probn-k,
where n is the number of blocks involved in the problem.12 Each problem in the
briefcase domain is named n×m, where n is the number of objects and m the
number of rooms. The numbers in the problem column of the teatime domain
refer to the number of rooms.

12The blocks world problems are from the repository of the Second IPC:
http://www.cs.colostate.edu/meps/repository/aips2000.html

24

The results reported above show that, in terms of execution times, Pdk is
comparable with YAHSP and LPG. It is generally faster than SATPLAN and
the breadth-first GOLOG planner, since the performances of these two planners,
acting by iterative deepening, rapidly degrade when the length of the solution
plan increases. For instance, SATPLAN takes almost 700 seconds to solve the
teatime problem with 4 rooms. The depth-limited GOLOG planner is faster
than Pdk, but, if the depth limit is not large enough, it employs a large amount
of time to discover that there is no solution. For instance, GOLOG needs nearly
35 seconds to realize that there is no solution to the teatime problem with 6
rooms in the limit of 45 actions.

In interpreting the results shown above one has to remember that only Pdk
and the GOLOG planners use heuristic knowledge and the domains used in
the comparison can all be given meaningful information (in a relatively simple
form).

With respect to plan quality, in classical planning problems, where actions
are assumed to have the same cost, a reasonable measure is plan length. Plan
length, in turn, can be measured either in terms of number of actions, or, if
parallel actions are allowed, in terms of number of “layers” (sets of actions
that can be executed in parallel). SATPLAN, for instance, is optimal in terms
of number of layers, but not necessarily in terms of number of actions. The
breadth-first GOLOG planner, on the contrary, is optimal in terms of number
of actions but does not allow for parallelism. Both measures are arbitrary, in
general: there are problems where it is important to reach the goal as soon as
possible, and problems where action execution costs cannot be ignored. In the
tables that follow, plan length is measured in terms of number of actions, not
to penalise planners than cannot build parallel plans (the GOLOG planners,
YAHSP and LPG). The real numbers in the LPG column are the average of
plan lengths resulting from 50 executions on the same problem.

The blocks world: number of actions

Pdk GOLOG SATPLAN YAHSP LPG
problem Dfs Bfs

Prob4-1 5 5 5 5 5 5.34

Prob6-1 5 5 5 7 5 5.62

Prob8-1 10 10 10 15 10 10.44

Prob10-1 17 17 16 28 19 18.26

Prob12-1 21 21 17 − 20 22.86

Prob14-1 19 22 − − 24 23.88

Prob16-1 27 28 − − 34 36.68

Prob18-1 32 32 − − 42 43.10

25

The briefcase domain: number of actions

Pdk GOLOG SATPLAN YAHSP LPG
problem Dfs Bfs

3× 3 10 10 10 10 12 11.16

4× 4 13 13 13 13 16 15.12

6× 3 16 16 16 16 18 18.36

6× 6 19 19 19 − 24 22.94

8× 4 21 21 − 21 24 24.50

10× 10 31 31 − − 40 38.22

12× 10 35 35 − − 44 42.30

14× 10 39 39 − − 48 46.40

16× 10 43 43 − − 52 51.52

The teatime domain: number of actions

Pdk GOLOG SATPLAN YAHSP LPG
problem Dfs Bfs

2 16 16 14 14 14 15.00

3 24 23 22 22 22 22.40

4 32 32 30 30 30 30.40

6 50 50 48 − 48 48.58

8 68 68 − − 66 67.30

12 104 104 − − 102 105.88

16 140 140 − − − 145.10

20 176 176 − − − 185.14

22 194 194 − − − 204.36

From the tables, it appears that Pdk, both GOLOG planners and in most
cases also SATPLAN find plans close to the optimal ones. With respect to
the breadth-first GOLOG planner and SATPLAN, this is due to their iterative
deepening mechanism. The results regarding the depth-first GOLOG planner
and Pdk are due to the addition of suitable control knowledge.

With respect to YAHSP and LPG, we can note that plan lengths are com-
parable with Pdk in the teatime domain, where also their execution times are
closer, while the plans found by YAHSP and LPG are about 20% longer than
those found by Pdk in the other two domains, and the percentage increases
with problem difficulty.

The experimental results reported above show that Pdk often finds the right
balance between execution time and plan quality.

7 Concluding remarks

Automatic planning is a computationally hard task. In fact, the general plan-
existence problem for STRIPS-like operators is known to be PSPACE-complete
[10]. Even if modern domain-independent planners handle far more complex
problems than a few years ago there is a widespread trend towards the use
of extra problem dependent information, in order to obtain enhanced perfor-
mances.

26

However, the detection and correct statement of effective control knowledge
is often a difficult task. For this reason, it is important to have a high-level, nat-
ural and easy-to-use specification language, requiring no specific programming
skills.

To this aim, this paper presents the language PDDL-K, an extension of the
ADL-subset of the standard PDDL, that provides the domain expert with a
sort of guide, through a set of predefined schemata, and allows one to easily
and naturally specify heuristic information. The planner Pdk implements the
semantics of PDDL-K, given in terms of a translation into LTL formulae. It
builds the encoding of the input specification and reduces planning to LTL
model search. Thanks to the fact that the whole problem is encoded by a
logical theory, Pdk also provides a set of tools based on metalevel properties,
that can help the user in the debugging task. Experimental results show that
the performances of Pdk are comparable with other planners, both in terms of
execution time and plan quality.

References

[1] J. F. Allen. Temporal reasoning and planning. In J. F. Allen, H. A. Kautz,
R. N. Pelavin, and J. D. Tenenberg, editors, Reasoning about Plans, pages
1–68. Morgan Kaufmann Publishers, Inc., 1991.

[2] J.F. Allen. Planning as temporal reasoning. In Proc. of the Second Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR-91),
pages 3–14, 1991.

[3] F. Bacchus and F. Kabanza. Planning for temporally extended goals. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), pages 1215–1222. AAAI Press / The MIT Press, 1996.

[4] F. Bacchus and F. Kabanza. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence, 16:123–191, 2000.

[5] M. Bacchus, F. Ady. Precondition control. Manuscript, 1999.

[6] C. Baral. Knowledge representation, reasoning, and declarative problem-
solving with answer sets. Cambridge University Press, 2003.

[7] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. MetateM:
a framework for programming in temporal logic. In Proc. of REX Work-
shop on Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness, volume 430 of LNCS. Springer, 1989.

[8] H. Barringer, M. Fisher, D. Gabbay, and A. Hunter. Meta-reasoning in
executable temporal logic. In Proc. of the Second Int. Conf. on Principles
of Knowledge Representation and Reasoning, 1991.

[9] W. Bibel. Let’s plan it deductively. In 15th International Joint Conference
on Artificial Intelligence (IJCAI-97), volume 2, pages 1549–1562. Morgan
Kauffmann, 1997.

[10] T. Bylander. Complexity results for planning. In Proc. of the 12th Int.
Joint Conf. on Artificial Intelligence (IJCAI-91), pages 274–279, 1991.

27

[11] D. Calvanese, G. De Giacomo, and M. Y. Vardi. Reasoning about actions
and planning in LTL action theories. In Proc. of the 8th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR 2002), pages
593–602, 2002.

[12] S. Cerrito and M. Cialdea Mayer. Using linear temporal logic to model and
solve planning problems. In F. Giunghiglia, editor, Proceedings of the 8th
International Conference on Artificial Intelligence: Methodology, Systems,
Applications (AIMSA’98), pages 141–152. Springer, 1998.

[13] A. Cesta and A. Oddi. DDL.1: a formal description of a constraint rep-
resentaton language for physical domains. In M. Ghallab and A. Milani,
editors, New Direction in AI Planning, pages 341–352. IOS Press, 1996.

[14] M. Cialdea Mayer, A. Orlandini, G. Balestreri, and C. Limongelli. A plan-
ner fully based on linear time logic. In S. Chien, S. Kambhampati, and
C.A. Knoblock, editors, Proc. of the 5th Int. Conf. on Artificial Intelli-
gence Planning and Scheduling (AIPS-2000), pages 347–354. AAAI Press,
2000.

[15] P. Doherty and J. Kvarnström. TALplanner: A temporal logic based plan-
ner. AI Magazine, 22:95–102, 2001.

[16] K. Erol, J. Hendler, and D. S. Nau. Complexity results for HTN planning.
In Proceedings of AAAI-94, 1994.

[17] R. E. Fikes and N.J. Nilsson. STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3–4):189–208,
1971.

[18] A. Finzi, F. Pirri, and R. Reiter. Open world planning in the Situation
Calculus. In Proceedings of the 7th Conference on Artificial Intelligence
(AAAI-00) and of the 12th Conference on Innovative Applications of Ar-
tificial Intelligence (IAAI-00), pages 754–760. AAAI Press, 2000.

[19] M. Fisher and R. Owens. An introduction to executable modal and tem-
poral logics. In M. Fisher and R. Owens, editors, Executable modal and
temporal logics (Proc. of the IJCAI’93 Workshop), volume 897 of LNAI,
pages 1–20. Springer, 1995.

[20] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. Journal of Artificial Intelligence Research,
20:61–124, 2003.

[21] H. Geffner. Perspectives on artificial intelligence planning. In Proceedings
Eighteenth National Conference on Artificial Intelligence (AAAI-2002),
pages 1013–1023, 2002.

[22] Yi-Cheng Huang, Bart Selman, and Henry A. Kautz. Control knowledge
in planning: Benefits and tradeoffs. In AAAI/IAAI, pages 511–517, 1999.

[23] G. L. J. M. Janssen. Logics for Digital Circuit Verification. Theory, Algo-
rithms and Applications. CIP-DATA Library Technische Universiteit Eind-
hoven, 1999.

28

[24] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional
logic. In Proc. of the 5th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR’96), pages 374–384, 1996.

[25] H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann, editor,
10th European Conference on Artificial Intelligence (ECAI-92), pages 360–
363. Wiley & Sons, 1992.

[26] H. Kautz and B. Selman. BLACKBOX: A new approach to the application
of theorem proving to problem solving. In Working notes of the AIPS-98
Workshop on Planning as Combinatorial Search, pages 58–60, 1998.

[27] H. Kautz and B. Selman. The role of domain-specific knowledge in the
planning as satisfiability framework. In Proc. of the Fourth Int. Conf. on
Artificial Intelligence Planning Systems (AIPS-98), 1998.

[28] H. Kautz and B. Selman. Unifying sat-based and graph-based planning. In
IJCAI-99, Stockholm, 1999.

[29] J. Koehler and R. Treinen. Constraint deduction in an interval-based tem-
poral logic. In M. Fisher and R. Owens, editors, Executable Modal and
Temporal Logics, (Proc. of the IJCAI’93 Workshop), volume 897 of LNAI,
pages 103–117. Springer, 1995.

[30] H. Levesque. What is planning in the presence of sensing? In Proc. of
the 13th National Conference on Artificial Intelligence, AAAI-96, pages
1139–1146. AAAI Press, 1996.

[31] V. Lifschitz. Answer set planning. In Proceedings of International Confer-
ence on Logic Programming (ICLP-1999), pages 23–37, 1999.

[32] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans in linear logic:
I. Actions as proofs. Theoretical Computer Science, 113:349–370, 1993.

[33] J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of502 artificial intelligence. In B. Meltzer and D. Michie, editors, Ma-
chine Intelligence, volume 4, pages 463–502. Edimburgh University Press,
1969.

[34] E. Pednault. ADL: exploiting the middle ground between STRIPS and the
situation calculus. In Proc. of the Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR-89), pages 324–332, 1989.

[35] M. Pistore and P. Traverso. Planning as model checking for extended goals
in non-deterministic domains. In Proc. IJCAI’01. AAAI Press, 2001.

[36] R. Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In V. Lifschitz,
editor, Artificial Intelligence and mathematical theory of computation: Pa-
pers in honor of John McCarthy, pages 359–380. Academic Press, 1991.

[37] R. Reiter. Knowledge in Action: logical foundations for specifying and
implementing dynamical systems. MIT Press, 2001.

29

[38] J. Rintanen. Constructing conditional plans by a theorem-prover. Journal
of Artificial Intellingence Research, 10:323–352, 1999.

[39] S. J. Rosenschein. Plan synthesis: a logical perspective. In Proc. of IJCAI-
81, pages 331–337, 1981.

[40] T. Son, C. Baral, and S. McIlraith. Domain-dependent knowledge in answer
set programming. ACM Transactions on Computational Logic, 2005. To
appear.

[41] B. Stephan and S. Biundo. Deduction based refinement planning. In
B. Drabble, editor, Proceedings of the 3rd International Conference on
Artificial Intelligence Planning Systems (AIPS-96), pages 213–220. AAAI
Press, 1996.

[42] V. S. Subrahmanian and C. Zaniolo. Relating stable models and AI plan-
ning domains. In Proceedings of International Conference on Logic Pro-
gramming (ICLP-1995), pages 233–247, 1995.

[43] P. Wolper. The tableau method for temporal logic: an overview. Logique
et Analyse, 28:119–152, 1985.

[44] Q. Yang. Formalizing planning knowledge for hierarchical planning. Com-
putational Intelligence, 6:12–24, 1990.

30

