
Università degli Studi di Roma Tre
Dipartimento di Informatica e Automazione
Via della Vasca Navale, 79 – 00146 Roma, Italy.

Tableaux with Substitution for

Hybrid Logic with the Global

and Converse Modalities

Serenella Cerrito1 and Marta Cialdea Mayer2

RT-DIA-155-2009 November 2009

1 Ibisc, FRE CNRS 3190, Université d’Evry Val d’Essonne
2 Università di Roma Tre, Italy

ABSTRACT

This work provides the full proofs of the properties of the tableaux calculus for hybrid
logic with the global and converse modalities presented in [3], which focuses on the HL(@)
fragment of the calculus. While such a fragment terminates without loop checks, when
the converse and global modalities are added to the language, and the corresponding
rules to the system, termination is achieved by means of a loop checking mechanism. The
peculiarity of the system is the treatment of nominal equalities by means of a substitution
rule. The main advantage of such a rule, compared with other approaches, is its efficiency,
that has been experimentally verified for the HL(@) fragment. Such an advantage should
persist in the extended calculus.

In this work we give the detailed termination and completeness proofs for the entire
calculus. Although the main guidelines are the same as the corresponding proofs for
HL(@), the proofs for the extended calculus conceal many subtleties that have to be
handled with care.

2

1 Introduction

Hybrid logic extends modal logic with the possibility of naming worlds by means of
nominals, i.e. atomic formulae which hold in exactly one world. Satisfaction assertions
are formulae of the form @aF (where @ is the satisfaction operator, a is a nominal and F

a formula), stating that F holds at the world named a. The satisfaction operator is the
only additional operator, with respect to standard modal logic K, of the so called basic
hybrid logic, HL(@).

A previous work, [4], further refined and extended in [3], presented a tableaux calculus
for HL(@), called H, whose characterizing feature is the treatment of nominal equalities,
i.e. formulae of the form @ab, stating that a and b actually name the same world, by
means of a substitution rule. Such a rule minimizes possible redundancies deriving from
the presence of nominal equalities. Like other calculi for basic hybrid logic, H enjoys
strong termination (every tableau in H is finite, independently of the rule application
order), and termination does not need loop checks. Moreover, the system does not use
any extra-logical notation, like prefixes, i.e. it is an internalized calculus. The computa-
tional advantages of substitution, with respect to other approaches (mainly [2]), has been
experimentally verified [5].

In [3], the extension of H handling the global (A and E) and converse (2− and 3
−)

modalities is presented. The expansion rules added to deal with the new operators are
the same as those proposed in [1] and, like in [2, 1], termination is achieved by means of a
loop checking mechanism. The extended calculus, which will be called H+, should share
with H its computational advantages, since it preserves the substitution rule.

In [3], the proofs of the fundamental properties of H+, namely soundness, completeness
and termination, are given in detail only for the H subsystem. This work gives the full
proofs for H+.

2 Preliminaries

This section contains the basic definitions that will be used in the sequel, concerning the
syntax and semantics of the “uni-modal” version of HL(@), its extension to the multimodal
case being straightforward.

Let NOM and PROP be disjoint sets of propositional letters. The elements of NOM are
called nominals and the elements of NOM ∪ PROP atoms. We shall use lowercase letters
from the beginning of the alphabet, possibly with indexes, as metavariables for nominals,
and p, q, r, possibly with indexes, for elements of PROP. The set of formulae in HL(@) is
defined by the following grammar:

F := ⊥ | p | a | ¬F | F∧F | F∨F | @aF | 2F | 3F | 2
−F | 3

−F | AF | EF

where p ∈ PROP and a ∈ NOM.
An interpretation M is a quadruple 〈W, R, N, I〉 where W is a non-empty set (whose

elements are the states of the interpretation), R ⊆ W × W (the accessibility relation),
N is a function NOM → W and I a function W → 2PROP. We shall write wRw′ as a
shorthand for 〈w, w′〉 ∈ R.

If M = 〈W, R, N, I〉 is an interpretation, w ∈ W and F a formula, the relation
Mw |= F (M satisfies F at w) is inductively defined as follows:

3

1. Mw 6|= ⊥.

2. Mw |= p if p ∈ I(w), for p ∈ PROP.

3. Mw |= a if N(a) = w, for a ∈ NOM.

4. Mw |= ¬F if Mw 6|= F .

5. Mw |= F ∧ G if Mw |= F and Mw |= G.

6. Mw |= F ∨ G if either Mw |= F or Mw |= G.

7. Mw |= @aF if M, N(a) |= F .

8. Mw |= 2F if for each w′ such that wRw′, Mw′ |= F .

9. Mw |= 3F if there exists w′ such that wRw′ and Mw′ |= F .

10. Mw |= 2
−F if for each w′ such that w′Rw, Mw′ |= F .

11. Mw |= 3
−F if there exists w′ such that w′Rw and Mw′ |= F .

12. Mw |= AF if for each w′ ∈ W , Mw′ |= F .

13. Mw |= EF if there exists w′ ∈ W such that Mw′ |= F .

A formula F is satisfiable if there exist an interpretation M and a state w of M, such
that Mw |= F . Two formulae F and G are logically equivalent (F ≡ G) iff for every
interpretation M and state w of M, Mw |= F if and only if Mw |= G.

It is worth pointing out that, for any nominal a and formula F :

¬@aF ≡ @a¬F ¬3F ≡ 2¬F ¬2F ≡ 3¬F

¬3
−F ≡ 2

−¬F ¬2F− ≡ 3
−¬F ¬AF ≡ E¬F ¬EF ≡ A¬F

This allows one to restrict attention to formulae in negation normal form (where negation
dominates only atoms), without loss of generality.

3 The tableau calculus H+

Tableau nodes are labelled by sets of satisfaction statements, i.e. assertion of the form
@aF . A formula of the form @aF will be called labelled by a. If @aF ∈ S, where S is a
tableau node, we say that F is true at a in S. A formula of the form @a3b, where b is a
nominal, is a relational formula.

In the sequel, sets of formulae will be written as comma separated sequences of for-
mulae. For the sake of simplicity, we assume that formulae are in negation normal form
(nnf).

The initial tableau for a set S of formulae is a node labelled by Sa = {@aF | F ∈ S},
where a is a new nominal. Sa is called the root set. Nominals occurring in Sa are called
root nominals, and, if T is a tableau rooted at Sa, then the set of its root nominals is
denoted by CT :

CT = {b | b is a nominal occurring in Sa}

4

Boolean Rules

@a(F ∧ G), S

@aF,@aG,@a(F ∧ G), S
(∧)

@a(F ∨ G), S

@aF,@a(F ∨ G), S @aG,@a(F ∨ G), S
(∨)

Label Rule

@a@bF, S

@bF,@a@bF, S
(@)

Modal rules

@a2F,@a3b, S

@bF,@a2F,@a3b, S
(2)

@a3F, S

@a3b,@bF,@a3F, S
(3)

where b is a new nominal
(not applicable if F is a nominal)

Closure rules

@ap,@a¬p, S

⊥
(⊥1)

@a¬a, S

⊥
(⊥2)

Table 1: Logical and closure rules for HL(@).

Table 1 contains the logical rules, i.e. all rules but substitution, of the system H for
basic hybrid logic, HL(@), already presented in [4, 3]. The additional rules of H+ for the
global and converse modalities, added in [3], are given in Table 2.

The 3, 3
− and E rules are called nominal generating rules.

It is worth pointing out that, contrarily to the 3-rule, there is no restriction on the
applicability of the 3

−-rule; in fact, it is necessary to expand formulae of the form @a3
−c

where c ∈ Nom, in order to obtain possible premises for the 2 and 2
−-rules, of the form

@c3a.
A tableau node S is closed if it contains ⊥ (see the Closure Rules of Table 1). A

tableau branch is open if all its nodes are open (otherwise it is closed). A tableau is
closed if all its branches are closed, otherwise it is open.

Definition 1 A formula occurring in a tableau node is an accessibility formula if it is a
relational formula introduced by application of the 3 or 3

−-rule.
A formula occurring in a tableau T is called native (in T) iff it is in the language of

the root set, i.e. it does not contain any non-root nominal.

Note that accessibility formulae are not native.

5

Converse rules

@a2
−F,@b3a, S

@bF,@a2
−F,@b3a, S

(2−)
@a3

−F, S

@b3a,@bF,@a3
−F, S

(3−)

where b is a new nominal

Global Rules

@aAF,S

@cF,@aAF,S
(A)

@aEF,S

@bF,@aEF,S
(E)

where c occurs in the premise where b is a new nominal

Table 2: Rules for the converse and global modalities

In order to define the last rule of the system, the substitution rule, the definition of
father and children of a nominal, given in [4, 3], has to be extended.

Definition 2 Let Θ be a tableau branch. If one of the nominal-generating rules (3, 3
−

or E) has been applied in Θ to a formula @aF generating a new nominal b, then a ≺Θ b

(and we say that b is a child of a, and a is the father of b).
The relation ≺+

Θ is the transitive closure of ≺Θ and ≺∗

Θ the reflexive and transitive
closure of ≺Θ. If a ≺+

Θ b we say that b is a descendant of a and a an ancestor of b in the
branch Θ.

The substitution rule, which is applicable only if a 6= b, is formulated as follows:

@ab, S

S#[a 7→ b]
(Sub)

where S#[a 7→ b] is obtained from S by:

1. deleting every formula containing a descendant of a;

2. replacing every occurrence of a with b.

When the substitution rule is applied, a is said to be replaced in the branch and the
descendants of a are called deleted in the branch.

Like in [4, 3], trivial cases of non-termination are ruled out by the following restriction:
a formula is never added to a node where it already occurs and the nominal-generating
rules are never applied twice to the same premise on the same branch.

Termination relies on loop-checking, that, like in [1], exploits the notion of twin nom-
inals:

Definition 3 Let T be a tableau, Θ a branch of T and S a node of Θ.
Then:

6

• If a is a nominal occurring in S then

FormsS(a) = {F | a : F occurs in S and F is native in T}

i.e. FormsS(a) contains all the native formulae labelled by a in S.

• Two nominals a and b are said to be twins in S if FormsS(a) = FormsS(b).

• If a is a nominal occurring in S, a is an urfather in S if there is no pair of distinct
twins b, c ∈ S such that b, c ≺∗

Θ a.1

In other terms, a and b are twins in a tableau node S if they label exactly the same
set of native formulae, and a nominal a is an urfather if neither a is a twin of one of
his ancestors, nor it is a descendant of two distinct twin nominals. Note that any root
nominal is necessarily an urfather, since it has no ancestors at all.

Termination is ensured by the following restriction:

R The rules 3, 3− and E are only allowed to be applied to a formula @aF of a node
S on a branch Θ if a is an urfather in S.

Nominals which are not urfathers in S are said to be blocked in S. A tableau branch
is said to be complete if no rule can be applied to expand it further (possibly because of
restriction R).

It is worth pointing out that, so far, the only significant difference with respect to the
internalized calculus proposed in [1] is the substitution rule. In fact all the other rules and
the blocking mechanism are essentially the same. Obviously, since the substitution rule
is destructive and tableaux are to be formulated in the “nodes as sets” style, the notions
of twin nominals and urfathers are relative to a single tableau node and not to tableau
branches.

4 Properties of H+

The soundness argument for H+ runs exactly as for H (see [4, 3]), modulo a previous
trivial argument establishing that also the new rules are locally sound. Here, we give the
details of the termination and completeness proofs.

4.1 Termination of H+

In order to show that the extension of H to the global and converse modalities terminates
with loop-checks, one can use an argument similar to the one given in [2] for the prefixed
calculus. However, the substitution rule has to be handled with care. In fact, when Sub is
either applied to @ab, or it substitutes an ancestor of a, the nominal a disappears, so that
some arguments are needed in order to show that this does not result in the possibility of
expanding a nominal that would otherwise be blocked by a.

Some of the intermediate results proved for H generalize to H+. In some cases, however,
such results are weaker, sometimes they must be strengthened and sometimes the proofs
are somewhat subtler. In order to properly state them, we need the following definition:

1The expression “urfather” is borrowed from [2].

7

Definition 4 Let T be a tableau rooted at S0, Θ a branch of T , and S a node of Θ.
Then:

S∗ = {F | F = G[b1 7→ c1, ..., bn 7→ cn] for some subformula G of some
A ∈ S, and c1, ..., cn ∈ CT}

where b1, · · · , bn are nominals occurring in G. In particular, the set S∗

0 contains every
formula that can be obtained from a subformula of some formula in the initial set, by
replacing nominals with other nominals still occurring in the initial set.

Note that S∗

0 is necessarily finite.
In order to ensure termination with loop checks, the quasi-subformula property of H

has to be strengthened.

Lemma 1 (Quasi-subformula property) If T is a tableau rooted at S0, and @aF is a
formula occurring in some node of T , then either @aF is a relational formula or F ∈ S∗

0 .
Moreover, any tableau branch Θ contains a finite number of native formulae labelled by

the same nominal. In particular, for every nominal a, the set of native formulae labelled
by a in Θ is a subset of

S∗

0 ∪ {3b | b ∈ CT}

Proof. For the first assertion, the inductive proofs given in [4, 3] can easily be extended
to handle the new rules.

In order to prove the second assertion, we must prove that, for any fixed nominal a,
the number of relational formulae of the form @a3b where b is a root nominal is finite.
But this is straightforward, since there is only a finite number of root nominals.

The following properties are direct consequences of Lemma 1: if T is a tableau rooted
at S0, then:

1. If @ab occurs in a node of T , then b ∈ CT . Therefore, in the applications of the
substitution rule, nominals are always replaced by root nominals.

2. A nominal b 6∈ CT may occur in tableau nodes only in relational formulae of the
form @a3b or @b3a, or as the label of a formula @bF , where F ∈ S∗

0 contains only
root nominals.

Lemma 2 If c and d are nominals, c, d 6∈ CT , and @c3d occurs in some node of a tableau
branch Θ, then either c ≺Θ d or d ≺Θ c, i.e. @c3d is an accessibility formula.

Proof. If c, d 6∈ CT , then @c3d cannot be obtained by application of the substitution
rule from an accessibility formula, since only root nominals can replace other nominals.

The above result is weaker than the corresponding one holding for H. In fact, if @c3d

is an accessibility formula, it can be introduced either by the 3 or the 3
− rule, so that it

can be either c ≺Θ d or d ≺Θ c. Moreover, if c is a root nominal, @c3d can be obtained
by substitution from an accessibility formula @a3d, and, if d ≺Θ a, d is not deleted when
replacing a with c.

From the above results it follows that if @aF occurs in a tableau, a 6∈ CT and F

contains any non-root nominal, then it is an accessibility formula.
Moreover:

8

Lemma 3 If Θ is a tableau branch and a any nominal occurring in Θ, then {b | a ≺Θ b}
is finite.

Moreover, in any tableau branch the number of accessibility formulae labelled by the
same nominal a is finite.

Proof. The first assertion is obvious, since the number of expandable formulae labelled
by the same nominal a is finite and the nominal-generating rules are never applied twice
to the same formula in a branch.

For the second assertion, let a be any fixed nominal occurring in a branch Θ and
b0, b1, ... all the nominals such that @a3bi is an accessibility formula occurring in Θ. Each
of them can be introduced either expanding a formula of the form @a3F (where F is not
a nominal) or a formula of the form @bi

3
−F . In other terms, for all bi, either a ≺Θ bi or

bi ≺Θ a.
By Lemma 1, there is only a finite number of expandable formulae of the form @a3F ,

hence the number of new nominals bi such that a ≺Θ bi is finite.
The expansion of a formula of the form @bi

3
−F generates a as a new nominal, therefore

there can be at most one accessibility formula of the form @a3bi with bi ≺ a.

From Lemmas 1, 2 and 3, it follows that:

Corollary 1 For every tableau branch Θ and nominal a, if a 6∈ CT , then the set

{F | @aF occurs in Θ}

is finite.
If a ∈ CT the set

{F | @aF occurs in Θ and F does not have the form 3b for some b 6∈ CT}

is finite.

Note that, differently from the corresponding result holding for H, the above corollary
distinguishes between root and non-root nominals. In fact, if it were possible that an
infinite number of nominals occurred in a branch, a root nominal might label an infinite
number of relational formulae.

Lemma 4 Let Θ be a tableau branch. If Θ is infinite then there is an infinite chain of
nominals

b1 ≺Θ b2 ≺Θ b3... .

Proof. The presence of the substitution rule makes the argument a little more compli-
cated than the corresponding one given in [2].

First of all we prove that if Θ is infinite, then there is an infinite number of nominals
occurring in Θ. If there were only a finite number of nominals, then any nominal, including
root nominals, would label a finite number of formulae (Corollary 1). Now, since formulae
are never added to nodes where they already occur, there should be at least a formula F

occurring in a node Si of Θ which disappears from the branch and then reappears in a
node Sj below Si. F can disappear only because some nominal occurring in it is either

9

replaced or deleted. But when a nominal is replaced or deleted, it can never occur again
in the branch below the application of Sub which replaces/deletes it.

Now, like in [2], we can prove that the infinite number of nominals occurring in Θ
can be arranged by ≺Θ in a forest of finitely branching trees (because any nominal can
generate only a finite number of new ones, by Lemma 3), each of them rooted at a root-
nominal. By König’s Lemma, if one of such trees is infinite, it has an infinite branch, i.e.
there is an infinite chain of nominals b1 ≺Θ b2 ≺Θ b3... .

Theorem 1 (Termination) Every tableau is finite.

Proof. By Lemma 4, if an infinite branch Θ exists, then there is an infinite chain of
nominals

b1 ≺Θ b2 ≺Θ b3... .

By Lemma 1, if @aF occurs in Θ and F is native, then F is an element of the finite set
S∗

0 ∪ {3b | b ∈ CT}, where S0 is the root set.
Let n be the cardinality of S∗

0 ∪ {3b | b ∈ CT} and consider the initial sub-chain:

b1 ≺Θ b2 ≺Θ b3...b2n+1 ≺Θ b2n+2

Let Θ′ be the initial segment of Θ up to, but not including, the nominal-generating
inference (3, 3

− or E) producing b2n+2. Let Sk be the last node of Θ′.
Since b2n+1 occurs in Sk, all its ancestors occur in Sk, too, because if some of them

had been either replaced or deleted above Sk, b2n+1 would have been deleted by the same
application of the substitution rule. Since b2n+1 is the father of b2n+2 in Θ, and it generates
b2n+2 by expanding Sk, then b2n+1 is an urfather in Sk, i.e. Sk does not contain two distinct
twins bi, bj ≺

∗ b2n+1, otherwise b2n+1 would be blocked in Sk.
Because of the choice of n, however, at least two nominals bi and bj among b1, ..., b2n+1

must be twins in Sk (i.e. they must label the same set of native formulae).

4.2 Completeness of H+

In this section we prove that if Θ is a complete and open branch of a H+ tableau rooted
at S0, then S0 is satisfiable.

The proof is similar to the completeness proof of H given in [4, 3] and exploits the
termination of H+. However, like in the case of termination, the presence of the new rules
requires attention.

We first consider the set labelling the last node of Θ, that is downward saturated (in
some sense), and we show that any such set has a model. The model construction in this
base step is different from [4, 3], since saturation only affects urfathers. The lifting result,
showing that satisfiability propagates upward to the root node, is proved like in [4, 3].

In what follows, we say that a formula F occurs in Θ (and Θ contains F) to mean
that F occurs in some node of Θ.

Here follows the notion of saturation, that is relative to a tableau node, since clauses
8–10 refer to urfathers in order to take into account the blocking mechanism. The notion
of urfather, however, depends on the branch, since the relation ≺∗

Θ is branch-dependant.

10

Definition 5 A node S of a tableau branch Θ is downward saturated iff the following
conditions hold:

1. S does not contain any formula of the form @a¬a, and it does not contain two
formulae of the form @ap and @a¬p for some atom p.

2. If @a(F ∧ G) ∈ S, then @aF, @aG ∈ S.

3. If @a(F ∨ G) ∈ S, then either @aF ∈ S or @aG ∈ S.

4. If @a@bF ∈ S, then @bF ∈ S.

5. If @a3b, @a2F ∈ S, then @bF ∈ S.

6. If @b3a, @a2
−F ∈ S, then @bF ∈ S.

7. If @aAF ∈ S, then for all nominals b occurring in S, @bF ∈ S.

8. If @a3F ∈ S, F is not a nominal, and a is an urfather in S, then there is a nominal
b such that @a3b, @bF ∈ S.

9. If @a3
−F ∈ S and a is an urfather in S, then there is a nominal b such that

@b3a, @bF ∈ S.

10. If @aEF ∈ S and a is an urfather in S, then there is a nominal b such that @bF ∈ S.

11. If @ab ∈ S then a = b.

Since any branch Θ is finite by Theorem 1, Θ = S0, S1, ..., Sk for some k. If Θ is open and
complete, then Sk is downward saturated.

Definition 6 Let Θ be a tableau branch, S a node of Θ and b a nominal occurring in S.
The urfather of b in S, written uS(b), is the nominal a ≺∗

Θ b such that a is a twin of b

and a is an urfather, if it exists (undefined otherwise).

Note that uS(b) may be undefined. Consider in fact a situation where a1 ≺
+
Θ a2 ≺+

Θ b

and a1 and a2 become twins after the generation of b (by effect of the converse rules). It
may happen that, in the chain leading to b, there is no ancestor of b that is a twin of b

(because of different choices in the expansion of disjunctive formulae). In such cases, b is
not an urfather and uS(b) does not exist either. It is worth pointing out also that there is
at most one urfather a ≺∗

Θ b that is a twin of b. In fact, if a1 and a2 are distinct nominals
such that a1 ≺∗

Θ b, a2 ≺∗

Θ b and both a1, a2 are twins of b, then a1 is also a twin of a2,
hence at least one among a1, a2 has a twin ancestor and is not an urfather.

The following results establish useful properties of urfathers.

Lemma 5 For any nominal a occurring in a tableau node S, a is an urfather in S if and
only if uS(a) = a.

Proof. If a is an urfather, then a itself is a nominal meeting all the requirements to
be us(a) (and such a nominal is unique, as already observed). The converse implication
is trivial: for any nominal b, the nominal us(b) is an urfather by definition, hence, when
uS(b) = b, b is necessarily an urfather.

11

Lemma 6 Let Θ be a branch of a tableau, S a node of Θ, a an urfather on S and b a
nominal occurring in S. If either a ≺Θ b or b ≺Θ a, then uS(b) is defined.

Proof. If b ≺Θ a and a is an urfather in S, then necessarily also b is an urfather in S: if
there were two twins c1, c2 ≺∗

Θ b then c1 and c2 would be twin ancestors of a, so a could
not be an urfather. Hence uS(b) is defined by Lemma 5.

If a ≺Θ b and uS(b) is undefined, then b is not an urfather, otherwise, by the previous
lemma, uS(b) = b. Therefore b has at least two twin ancestors. Let c1 and c2 be the
first two nominals, in the generation chain leading to b, such that c1 and c2 are twins and
c1, c2 ≺

∗

Θ b; say that c1 ≺
+
Θ c2 ≺

∗

Θ b. (note that c1, c2, a and b are necessarily on the same
chain). Obviously c1 is an urfather. Moreover, c1, c2 ∈ S, because, if any of them had
been either replaced or deleted by the Sub rule, then also b would be so. If c2 ≺

∗

Θ a, then
a would not be an urfather, thus this case is ruled out. If c1 ≺

∗

Θ a ≺∗

Θ c2, then necessarily
c2 = b, hence c1 = uS(b) (because c1 would be a twin of b and an urfather), contradicting
the hypothesis that uS(b) is undefined. Finally, the case where a ≺+

Θ c1 ≺
+
Θ c2 is impossible

because c1 and c2 are distinct, c1, c2 ≺
∗

Θ b, and a ≺Θ b. Thus, uS(b) is necessarily defined.

Lemma 7 Let S be a node in a tableau rooted at S0. If uS(a) = b and F is native, then
@aF ∈ S if and only if @bF ∈ S.

Proof. If @aF ∈ S and F is native, then F ∈ FormsS(a). The thesis then follows
because us(a) is a twin of a in S. The reasoning is the same for the other direction of the
implication.

The following lemma defines a model for the leaf S of any complete and open branch.
Note that S necessarily contains at least one root nominal a0, which is an urfather in S,
and, by Lemma 5, uS(a0) = a0.

Lemma 8 Let S be a saturated and open tableau leaf, and let a0 be any root nominal
occurring in S. Let M∗ be the interpretation defined as follows:

W = {a | a is an urfather in S};
R = {(uS(a), uS(b)) | @a3b ∈ S and both uS(a), uS(b) are defined};

For every nominal a occurring in S : N∗(a) =

{

uS(a) if uS(a) is defined
a0 otherwise

I(a) = {p | @ap ∈ S} for all a ∈ W

If a ∈ W , @aF ∈ S and F has not the form 3b for some b such that uS(b) is undefined,
then M∗

a |= F .

Proof. We remark beforehand that:

A. If a ∈ W , then uS(a) is defined and uS(a) = a (by Lemma 5). Therefore N∗(a) = a.

B. If a ∈ W and @aF ∈ S, with F having one of the following forms:

(i) 3G where G is not a nominal,

12

(ii) 3
−G

(iii) EG,

then there is a formula @bG ∈ S such that uS(b) is defined and:

• if F = 3G, then also @a3b ∈ S;

• if F = 3
−G, then also @b3a ∈ S.

In fact, since S is saturated and a is an urfather, S contains also some @bG (and
either @a3b or @b3a in cases (i) and (ii), respectively). Now, such formula (or
formulae) cannot have been obtained by replacing a for a nominal c, because in
that case the descendants of c have been deleted, so that @aF has to be expanded
again. This expansion of @aF has generated some @dG with a ≺Θ d (and either
@a3d or @d3a in cases (i) and (ii), respectively). If afterwords b has replaced d,
then b is a root nominal. Any other substitution affects both G and F . Therefore,
either a ≺Θ b or b is a root nominal. In the first case, uS(b) is defined by Lemma 6,
in the second by Lemma 5.

Let us assume that a ∈ W and @aF ∈ S, for F 6= 3b with uS(b) undefined. The proof
that M∗

a |= F is by induction on F .

Base We distinguish three cases.

1. F is a literal. If F is a propositional letter or its negation, then the result is
true by construction of M∗. In fact, if @ap ∈ S, for p ∈ PROP, since N∗(a) = a

because a ∈ W (by remark A), by definition M∗

a |= p. If @a¬p ∈ S, since S is
open, @ap 6∈ S and again M∗

a |= ¬p by construction.

2. F is a nominal b. Then necessarily b = a, since S is saturated, and the result
is trivial, since N∗(a) = a (by remark A).

3. F is ¬b, for some nominal b. Since S is open, b 6= a. By Lemma 1, F is native.
Therefore b is a root nominal, hence an urfather, and an element of W , so that
N∗(b) = b 6= a. Therefore M∗

a |= ¬b.

Induction Step We distinguish several cases according to the form of F .

1. F = G ∧ H . If @aG ∧ H ∈ S, since S is saturated, both @aG and @aF

are in S. By the inductive hypothesis, M∗, a |= G and M∗, a |= H , hence
M∗, a |= G ∧ H . If F is a disjunction the reasoning is similar.

2. F = 2G. Let b be any element of W such that aRb. By definition, there are
two nominals c and d such that a = uS(c), b = uS(d) and @c3d ∈ S. Since
a and c are twins and 2G is native, @c2G ∈ S by Lemma 7. And since S

is saturated, @dG ∈ S, so that also @bG ∈ S because b and d are twins and
G is native (Lemma 7 again). By the inductive hypothesis, then M∗

b |= G.
Therefore M∗

a |= 2G.

3. F = 2
−G. This case is quite similar to the previous one. Let b be any element

of W such that bRa. By definition, there are two nominals c and d such that
a = uS(c), b = uS(d) and @d3c ∈ S. Since a and c are twins and 2

−G is

13

native, @c2
−G ∈ S by Lemma 7. And since S is saturated, @dG ∈ S, so that

also @bG ∈ S because b and d are twins and G is native (Lemma 7 again). By
the induction hypothesis, then M∗

b |= G. Therefore M∗

a |= 2
−G.

4. F = AG. If @aAG ∈ S and S is saturated, for any nominal b occurring in
S, @bG ∈ S, hence in particular this holds for urfathers. By the induction
hypothesis, for all b ∈ W , M∗

b |= G. Therefore M∗

a |= AG.

5. F = EG. If @aEG ∈ S, since a ∈ W , then there is a formula @bG ∈ S such
that uS(b) is defined (by Remark B). Let then c = uS(b) (thus c ∈ W). Since
G is native, @cG ∈ S by Lemma 7, and by the inductive hypothesis Mc |= G.
Therefore M∗

a |= EG.

6. F is 3G. We distinguish two cases.

(a) G is a nominal b. By hypothesis, uS(b) is defined and belongs to W . So, let
uS(b) = c. By construction of M∗, we have: N∗(a) = a, N∗(b) = uS(b) = c

and aRc. Hence M∗

a |= 3b.

(b) G is not a nominal, and therefore it is native. By Remark B, since a ∈ W ,
there is a nominal b such that @a3b, @bG ∈ S and uS(b) is defined. Since
uS(b) is a twin of b and G is native, if c = uS(b) we have @cG ∈ S by
Lemma 7. By construction of M∗, aRc. By the inductive hypothesis,
M∗

c |= G, hence M∗

a |= 3G.

7. F is 3
−G. Observe that, differently from the above case, G is necessarily

native, because @a3
−c is not a relational formula (Lemma 1). By Remark

B, since a ∈ W , there is a nominal b such that @b3a, @bG ∈ S and uS(b)
is defined. Since uS(b) is a twin of b and G is native, if c = uS(b) we have
@cG ∈ S by Lemma 7. By the inductive hypothesis (since c ∈ W), we get
M∗

c |= G.

Now, since @b3a ∈ S, c = uS(b) and a = uS(a) (by remark A), by construction
cRa. Therefore M∗

a |= 3
−G.

The following result lifts the model existence property upwards to the root set.

Lemma 9 If Θ is a complete and open branch of a tableau rooted at S0, then S0 is
satisfiable.

Proof. We define an equivalence relation on nominals (with respect to the branch Θ) as
follows: a ∼ b if @ab occurs in Θ. The relation ≈ is the reflexive, symmetric and transitive
closure of ∼.

Now, let Θ be the sequence of nodes S0, ..., Sk, where Sk is its leaf (hence a saturated
and open node). Let M∗ = 〈W, R, N∗, I〉 be the model of Sk given by Lemma 8. Since
N∗ is undefined for nominals that do not occur in Sk, we can safely extend it to interpret
all the nominals occurring in Θ. Let a0 be any root nominal occurring in Sk. Then N is
the extension of N∗ such that for all nominals c occurring in Θ:

N(c) =

N∗(c) if c ∈ W , i.e. c occurs in Sk

N∗(d) if for some d ∈ W, c ≈ d

a0 otherwise

14

It is clear that if @ab occurs in Θ, then N(a) = N(b), and if c is deleted in Θ, then
N(c) = a0.

If M = 〈W, R, N, I〉, obviously, it still holds that for every @aF ∈ Sk, if a ∈ W and
F has not the form 3b for some b with uSk

(b) undefined, then MN(a) |= F .
We now prove that the satisfaction property propagates upwards, restricting our at-

tention to nominals that are not deleted in Θ. Let us say that a formula @aF is relevant
(w.r.t. Θ) iff either F is native, or both the following conditions hold:

• @aF contains only nominals that are never deleted in Θ, and

• F has not the form 3b for some b with uSk
(b) undefined;

Let us say that M is a Θ-model of a node S of Θ if for every relevant formula @aF ∈ S,
MN(a) |= F . Then we show that, for every i = 0, ..., k − 1:

(•) if M is a Θ-model of Si+1, then M is a Θ-model of Si.

When i = 0 this is what we want, because the root set obviously contains only native
(hence relevant) formulae.

In order to prove (•), the cases where Si+1 is obtained from Si by applying a logical
rule are trivial, since Si ⊆ Si+1.

So the only non-trivial case is the substitution rule, where:

Si = @ab, S
′

Si+1 = S ′#[a 7→ b]

By the induction hypothesis, for every relevant formula @cF ∈ Si+1 = S ′#[a 7→ b]
MN(c) |= F . Note that all the descendants of a are deleted in Θ. Since N(a) = N(b) (by
definition), MN(a) |= b and MN(a) |= @ab.

Let now @cF be any relevant formula in S ′ = Si\{@ab} such that @cF 6= (@cF)[a 7→ b].
If @cF is relevant then also (@cF)[a 7→ b] is relevant. In fact:

• if @cF is native, then also (@cF)[a 7→ b] is native because b is a root nominal
(Lemma 1).

• If @cF contains only nominals that are never deleted in Θ, then the same holds for
(@cF)[a 7→ b]. In fact, the only nominal possibly occurring in (@cF)[a 7→ b] and not
in @cF is b, and b ∈ CT (Lemma 1), so it cannot be deleted.

• If @cF is not a relational formula, obviously (@cF)[a 7→ b] is not a relational formula
either. So let us assume that F = 3d where uSk

(d) is defined. If d 6= a there is
nothing to prove ((@c3d)[a 7→ b] = @c[a7→b]3d and uSk

(d) is defined).

If d = a, then (@c3d)[a 7→ b] = @c[a7→b]3b. Since 3b is native, (@cF)[a 7→ b] is
relevant.

Therefore by the inductive hypothesis

MN(c[a7→b]) |= F [a 7→ b]

where c[a 7→ b] = b if c = a, and c[a 7→ b] = c otherwise. Since N(a) = N(b), MN(c[a7→b]) |=
F . If c[a 7→ b] = c, we are done. Otherwise, if c[a 7→ b] = b then c = a, so N(c[a 7→ b]) =
N(b) = N(a) = N(c). Hence, also in this case MN(c) |= F .

15

Theorem 2 (Completeness) If S is unsatisfiable, then every complete tableau for S is
closed.

Proof. Completeness follows directly from Lemma 9 and the fact that nominals occurring
in the initial set are never deleted.

References

[1] T. Bolander and P. Blackburn. Terminating tableau calculi for hybrid logics extending
K. In S. Demri and C. Areces, editors, Methods for Modalities 5, Cachan, France,
2007.

[2] T. Bolander and P. Blackburn. Termination for hybrid tableaus. Journal of Logic
and Computation, 2007.

[3] S. Cerrito and M. Cialdea Mayer. An efficient approach to nominal equalities in hybrid
logic tableaux. Journal of Applied Non-classical Logics. To appear.

[4] S. Cerrito and M. Cialdea Mayer. Terminating tableaux for HL(@) without loop-
checking. Technical Report IBISC-RR-2007-07, Ibisc Lab., Université d’Evry Val
d’Essonne, 2007. Available at
http://www.ibisc.univ-evry.fr/Vie/TR/2007/IBISC-RR2007-07.pdf.

[5] M. Cialdea Mayer, S. Cerrito, E. Benassi, F. Giammarinaro, and C. Varani. Two
tableau provers for basic hybrid logic. Technical Report RT-DIA-145-2009, Dipar-
timento di Informatica e Automazione, Università di Roma Tre, 2009. Available at
http://cialdea.dia.uniroma3.it/herod/.

16

